摘要
研究了常ф-曲率的Sasaki统计流形和常曲率统计流形之间两种余维数为1的统计浸入,并证明这两种情况下的Sasaki统计流形的常ф-曲率都等于1。此外,还给出了几个Sasaki统计流形的例子。
The statistical immersion of codimension one from a Sasakian statistical manifold of constant ф-curvature to a statistical manifold of constant curvature and its converse are studied in this paper.It can be proved that in both cases the constant ф-curvature of the Sasakian statistical manifold must be one.Besides,several examples of Sasakian statistical manifolds are constructed.
作者
吴凤
张量
WU Feng;ZHANG Liang(School of Mathematics and Statistics,Anhui Normal University,Wuhu 241000,Anhui,China)
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2021年第4期86-93,共8页
Journal of Shandong University(Natural Science)
基金
安徽师范大学博士启动基金资助项目(751841)。
关键词
Sasaki统计流形
常ф-曲率
统计超曲面
Sasakian statistical manifold
constantф-curvature
statistical hypersurface