期刊文献+

Beta流形的α-几何结构 被引量:2

The α-geometric Structures of Beta Manifold
下载PDF
导出
摘要 为了有效分析和利用Beta分布的性质,本文从信息几何方法的角度给出Beta流形的α-几何结构以及相关几何性质。通过推导计算,得出Beta流形上的Fisher信息矩阵、α-联络和α-曲率等几何结构以及与指数族相关的几何性质。同时,本文还给出Beta流形上的α-散度和几类不同的特殊散度函数,并通过具体图例进行分析比较。利用计算结果和相关结论,可以进一步了解和掌握Beta分布的性质和应用,并将之有效应用于相关问题处理中。 To effectively analyze and utilize the properties of Beta distribution,geometric structures of Beta manifold and its relevant geometric properties are presented by information geometry method in this paper.Some geometric structures including Fisher information matrix,α-connection and α-curvature as well as geometric properties related to exponential family are obtained through deduction and calculation.In addition,the α-divergence and some special divergence functions are given and comparatively analyzed by specific examples.The nature and application of Beta distribution are further understood and grasped through calculating results and relevant conclusions,which can be effectively applied to the treatment of related problems.
作者 许皓 谢亭亭 王君琦 XU Hao;XIE Tingting;WANG Junqi(College of Mathematics and Information,China West Normal University,Nanchong Sichuan 637009,China;College of Mathematic Science,University of Electronic Science and Technology of China,Chengdu 611731,China)
出处 《西华师范大学学报(自然科学版)》 2020年第3期249-255,共7页 Journal of China West Normal University(Natural Sciences)
基金 四川省科技计划重点研发项目(2019YFG0299) 西华师范大学博士科研启动专项项目(17E082)。
关键词 信息几何 Beta流形 几何结构 曲率 散度 information geometry Beta manifold geometric structure curvature divergence
  • 相关文献

参考文献3

二级参考文献20

  • 1仲锋惟,孙华飞,张真宁.Fisher Z分布流形的几何结构[J].科技导报,2007,25(9):33-36. 被引量:6
  • 2Amari S, Nagaoka H. Metbods of information geometry [M]. London: Oxford University Press, 2000. 被引量:1
  • 3Amari S. Differential geometrical methods in statistics [M]. Germany: Springer Lecture Notes in Statistics, 1985. 被引量:1
  • 4Dodson C T J. Gamma manifolds and stochastic geometry[C]//Proceedings of the Workshop on Recent Topics in Differential Geometry Santiago de Compostela. 1997: 85-92. 被引量:1
  • 5Ojo M O, Olapade A K. On a six-parameter generalized logisticdistribution[J]. Kragujevac J Math, 2004, 26: 31-38. 被引量:1
  • 6Cao L, Sun H, Zhang Z. The applications of information geometry to stock prices[J]. Journal of Beijing Institute of Technology, 2007, 27: 91-94. 被引量:1
  • 7Patil G P, Taillie C. Statistical evaluation of the attainment of interim cleanup standards at hazardous waste sites [J]. Environmental and Ecological Statistics, 1994, (1): 333-351. 被引量:1
  • 8Zhong F, Sun H, Zhang Z. The geometry of the dirichlet manifold [J]. Journal of the Korean Mathematical Society, 2008, 45(3): 859-870. 被引量:1
  • 9AMARI S. Differential geometrical methods in statistics[M]. Germany:Springer lecture Notes in Statistics, 1985. 被引量:1
  • 10AMARI S. Methods of information geometry [M]. England: Oxford University Press, 2000. 被引量:1

共引文献6

同被引文献14

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部