期刊文献+

集成滤光片型近红外光谱组件的时空域性能改善研究 被引量:1

Improvement of LVF-based NIR Spectral Sensor on Both Spatial and Time Domains
下载PDF
导出
摘要 提出针对线性渐变滤光片型近红外光谱组件的时空域性能改善方法,并通过研制微型化512×2元InGaAs光谱组件,结合多帧数据融合算法完成了实验验证。光谱通道采用基于多次测量的两列相邻光敏元动态组合实现,相比单个大光敏元作为光谱通道,可以改善探测器盲元引起的不良影响。波长标定和测试结果表明,该光谱组件在线性渐变滤光片的分辨率限制下,可以有效减小相邻光谱通道间的波长间隔。 The method to improve performance of Linear Variable Filter(LVF)based spectrometers is proposed and validated.By this means,a compact 512×2 InGaAs spectral sensor with dynamic data fusion on both spatial and time domains is developed.In the spectral sensor,spectral channel is not a single pixel but a group of neighboring pixels with multi-frame measurements.The data from two pixel arrays are multiplexed to compensate possible sensor defects such as blind pixels.The wavelength calibration and experimental results show that the proposed methods can significantly reduce the wavelength spacing between spectral channels with the optical resolution limit of LVF.
作者 王绪泉 黄松垒 柯鹏瑜 刘梦璇 赵振力 方家熊 WANG Xuquan;HUANG Songlei;KE Pengyu;LIU Mengxuan;ZHAO Zhenli;FANG Jiaxiong(State Key Laboratories of Transducer Technology,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China;Key Laboratory of Infrared Imaging Materials and Detectors,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《光子学报》 EI CAS CSCD 北大核心 2021年第4期191-197,共7页 Acta Photonica Sinica
基金 National Natural Science Foundation of China(No.61376052) the Open Project Program of the State Key Laboratories of Transducer Technology of China(No.SKT1907) the Open Project Program of the State Key Laboratories of Infrared Physics of China(No.M201901)
关键词 铟镓砷 光谱组件 线性渐变滤光片 波长标定 近红外 InGaAs Spectral sensor Linear variable filter Wavelength calibration Near-infrared
  • 相关文献

参考文献5

二级参考文献28

  • 1范滨,李刚正,程鑫彬,王利,王占山,唐骐.线性渐变滤光片的制备与测试[J].光学仪器,2006,28(4):95-103. 被引量:12
  • 2J. C. Demro, R. Hartshorne, and L. M. Woody, Proc. SPIE 2480, 280 (1995). 被引量:1
  • 3L. Zhang, E. W. Anthon, J. C. Harrison, P. G. Hannan, F. J. Van Milligen, S. C. McEldowney, and S. Zarrabian, Proc. SPIE 3855, 42(1999). 被引量:1
  • 4A. Emadi, H. Wu, G. de Graaf, P. Enoksson, J. H. Correia, and R. Wolffenbuttel, Appl. Opt. 51, 4308 (2012). 被引量:1
  • 5M. Ghaderi, N. P. Ayerden, A. Emadi, P. Enoksson, J. H. Correia, G. de Graaf, and R. F. Wolffenbuttel, J. Micromech. Microeng. 24, 084001 (2014). 被引量:1
  • 6G. Minas, R. F. Wolffenbuttel, and J. H. Correia, J. Opt. A: Pure Appl. Opt. 8, 272 (2006). 被引量:1
  • 7G. D. Caprio, D. Schaak, and E. Schonbrun, Biomed. Opt. Express 4, 1486 (2013). 被引量:1
  • 8Y. Yu, X. Zhen, H. Zhang, and B. Zhou, Chin. Opt. Lett. 11, 120601(2013). 被引量:1
  • 9Z. Chen, J. Chen, Y. Li, J. Qian, J. Qi, J. Xu, and Q. Sun, Chin. Opt. Lett. 11, 112401 (2013). 被引量:1
  • 10A. M. Piegari and V. Janicki, Proc. SPIE 5250, 343 (2004). 被引量:1

共引文献17

同被引文献27

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部