期刊文献+

基于LSTM的风机故障检测研究 被引量:2

Research on Fault Detection of Fan Based on LSTM
下载PDF
导出
摘要 风能如今在电网系统总容量中占有很大比例,但由于风力涡轮机频繁故障,导致非计划停机时间,从而带来高运行维护成本,风机故障检测是解决方法之一。为了解决其中因故障日志缺失和不适宜的特征选择问题,使用DBSCAN聚类算法对原始数据进行异常聚类,将数据标记成正常和故障两类。其次,提出基于LSTM模型进行故障检测,无需手动提取特征,学习多变量时间序列数据中隐藏的依赖关系,使得整个模型有较好的故障检测能力。 Nowadays,wind turbines account for a large proportion of the total power grid outage time,and therefore one of the solutions to the problem is that the wind turbine takes up a large proportion of the total power grid outage time,which leads to the maintenance cost.In order to solve the problem of missing fault log and unsuitable feature selection,DBSCAN clustering algorithm is used to cluster the original data ab⁃normally,and the data are marked as normal and fault.Secondly,the fault detection based on LSTM model is proposed,which does not need to extract features manually,and learn the hidden dependency relationship in multivariate time series data,so that the whole model has better fault detection ability.
作者 胡翔 殷锋 袁平 HU Xiang;YIN Feng;YUAN Ping(College of Computer Science,Sichuan University,Chengdu 610065;College of Computer Science and Technology,Southwest University for Nationalities,Chengdu 610041;College of Mathematics and Information Engineering,Chongqing University of Education,Chongqing 400067)
出处 《现代计算机》 2021年第8期36-40,共5页 Modern Computer
基金 四川省科学技术厅省重点科技专项(No.2020YFG0254)。
关键词 故障检测 机器学习 LSTM SCADA数据 Fault Detection Machine Learning LSTM SCADA Data
  • 相关文献

参考文献1

二级参考文献14

  • 1何中胜,刘宗田,庄燕滨.基于数据分区的并行DBSCAN算法[J].小型微型计算机系统,2006,27(1):114-116. 被引量:16
  • 2王海军,张德礼.基于空间聚类的城镇土地定级方法研究[J].武汉大学学报(信息科学版),2006,31(7):628-631. 被引量:25
  • 3赵鹏,耿焕同,王清毅,蔡庆生.基于聚类和分类的个性化文章自动推荐系统的研究[J].南京大学学报(自然科学版),2006,42(5):512-518. 被引量:13
  • 4Andrew A, Thomas C, Korniss G. Ecological invasion.. Spatial clustering and the critical radi- us. Evolutionary Ecology Research, 2007,9 (2) :375-394. 被引量:1
  • 5Wan L, Li Y, Liu W, et al. Application and study of spatial cluster and customer partitio- ning. Proceedings of the 4^th International Con- ference on Machine Learning and Cybernetics. Guangzhou, 2005, 1701-1706. 被引量:1
  • 6Ester M, Kriegel H P, Sander J, etal. A den- sity-based algorithm for discovering clusters in large spatial databases. The 2^nd International Conference on Knowledge Discovery and Data Mining, Portland,USA, 1996, 226-231. 被引量:1
  • 7Garlan D, Siewiorek D P, Smailagic A, et al. Project aura: Toward distraction free pervasive computing. IEEE Pervasive Computing, 2002, 1(2) : 22-31. 被引量:1
  • 8Januzaj E, Kriegel H P, Pfeifle M. DBDC: Density based distributed clustering. Proceed- ings of the 9^th International Conference of Ex tending Database Technology. Heraklion : Springer, 2004, 88-105. 被引量:1
  • 9Balan R, Flinn J, Satyanarayanan M, et al. The case for cyber for aging. Proceedings of the 10^th ACM SIGOPS European Workshop, Saint Emilion, France, 2002, 87-92. 被引量:1
  • 10Want R, Pering T, Danneels G, etal. The per- sonal server: Changing the way we think about ubiquitous computing. Borriello G H. Proceed- ings of the 4^th International Conference on Ubiq- uitous Computing. Berlin: Springer, 2002, 194-209. 被引量:1

共引文献15

同被引文献37

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部