期刊文献+

目标丢失判别机制的视觉跟踪算法及应用研究 被引量:3

Research on Visual Tracking Algorithm and Application of Target Loss Discrimination Mechanism
下载PDF
导出
摘要 当跟踪对象被严重遮挡或者离开相机视野范围时,机器人的跟踪目标往往会丢失。为了实现准确跟踪,提出了目标丢失判别跟踪YOLO-RTM算法。该方法通过YOLOv3检测视频第一帧中的目标。利用实时多域卷积神经网络(Real-Time MDNet,RT-MDNet)跟踪算法预测目标边界框的变化。计算重叠度,根据重叠度与预设阈值的比较结果决定模型更新方式,当重叠度高于阈值时,采用RT-MDNet更新外观模型,当重叠度低于阈值时,采用YOLOv3重新搜索目标并更新外观模型。在Turtlebot2机器人上的实验结果表明,提出的算法能满足移动机器人跟踪的可靠性,且有效提高跟踪算法的实用性。 When the tracked target is severely occluded or leaves the field of camera’s view,the robot tracking target is often lost.In order to track the target robustly,a target loss discrimination tracking algorithm named YOLO-RTM is proposed.This method detects the target in the first frame of video through YOLOv3.Then the Real-Time Multi-Domain convolutional neural Network(Real-Time MDNet,RT-MDNet)tracking algorithm is used to predict the change of the target frame by frame.Finally,the Intersection over Union(IoU)is calculated,and the updating mode of the model is determined according to the comparison result of the IoU and the preset threshold value.If the IoU is higher than the threshold value,RT-MDNet is used to update the appearance model.If the IoU is lower than the threshold value,Yolov3 is used to search the target again and update the appearance model.The experimental results on the Turtlebot2 robot show that the reliability of mobile robot tracking in general scenes is satisfied by the proposed algorithm,and the practicability of tracking algorithm is improved effectively.
作者 牟清萍 张莹 张东波 王新杰 杨知桥 MOU Qingping;ZHANG Ying;ZHANG Dongbo;WANG Xinjie;YANG Zhiqiao(College of Automation and Electronic Information,Xiangtan University,Xiangtan,Hunan 411105,China;National Engineering Laboratory for Robotic Visual Perception and Control Technology,Changsha 410082,China)
出处 《计算机工程与应用》 CSCD 北大核心 2021年第9期140-147,共8页 Computer Engineering and Applications
基金 国家自然科学基金(61175075) 国家自然科学基金区域创新发展联合基金(U19A2083) 湖南省战略性新兴产业科技攻关与重大成果转化项目(2019GK4007) 湖南省重点学科项目。
关键词 视觉跟踪 目标丢失判别机制 实时多域卷积神经网络 重叠度 出镜头 visual tracking target loss discrimination mechanism real-time multi-domain convolutional neural networks Intersection over Union(IoU) leaves the field of camera’s view
  • 相关文献

参考文献7

二级参考文献110

  • 1王璐,崔益安,苏虹,蔡自兴.移动机器人的运动目标实时检测与跟踪[J].计算机工程与应用,2005,41(15):30-33. 被引量:8
  • 2侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:254
  • 3Comaniciu D, Ramesh V, Meer P. Real-time tracking of non- rigid objects using mean shift. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recog- nition. Hilton Head Island, SC: IEEE, 2000. 142-149. 被引量:1
  • 4Risfic B, Arulampalam S, Gordon N. Beyond the Kalman filter-book review. IEEE Aerospace and EJectronic Systems Magazine, 2004, 19(7): 37-38. 被引量:1
  • 5Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pat- tern Recognition. Hawaii, USA: IEEE, 2001.1-511-I-518. 被引量:1
  • 6Perez P, Hue C, Vermaak J, Gangnet M. Color-based prob- abilistic tracking. In: Proceedings of the 7th European Conference on Computer Vision. Copenhagen, Denmark: Springer, 2002. 661-675. 被引量:1
  • 7Possegger H, Mauthner T, Bischof H. In defense of color- based model-free tracking. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 2015. 2113-2120. 被引量:1
  • 8Danelljan M, Khan F S, Felsberg M, van de Weijer J. Adap- tive color attributes for real-time visual tracking. In: Pro- ceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA: IEEE, 2014. 1090-1097. 被引量:1
  • 9Ojala T, Pietikainen M, Harwood D. Performance evalua- tion of texture measures with classification based on Kull- back discrimination of distributions. In: Proceedings of the 12th IAPR International Conference on Pattern Processing. Jerusalem: IEEE, 1994. 582-585. 被引量:1
  • 10Zhou H Y, Yuan Y, Shi C M. Object tracking using SIFT features and mean shift. Computer Vision and Image Un- derstanding, 2009, 113(3): 345-352. 被引量:1

共引文献320

同被引文献21

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部