摘要
Graphene oxide(GO) has received considerable attention for glucose detection because of high surface area, abundant functional groups, and good biocompatibility. Defects and functional groups of the GO are beneficial to immobilization of glucose oxidase(GOD), but sacrificing electron-transfer capability for highly-sensitive detection. In order to obtain high GOD loading and highly-sensitive detection of biosensors, we first designed and fabricated a graphene-laminated electrode by combining GO and edgefunctionalized graphene(FG) layers together onto glassy-carbon electrode. The graphene-laminated electrodes exhibited faster electron transfer rate, higher GOD loading of 3.80 × 10^(-9) mol·cm^(-2), and higher detection sensitivity of 46.71 μA·mM^(-1)·cm^(-2) than other graphene-based biosensors reported in literature. Such high performance is mainly attributed to the abundant functional groups of GO, high electrical conductivity of FG, and strong interactions between components in the graphene-laminated electrodes.By virtue of their high enzyme loading and highly-sensitive detection, the graphene-laminated electrodes show great potential to be widely used as high-performance biosensors in the field of medical diagnosis.
基金
financial supports from the National Natural Science Foundation of China (No. 51802317)
Liaoning Natural Science Foundation (No. 2019JH3/30100008)
Liaoning Key Research & Development Project (No. 2019JH2/10300045)
Joint Fund for Advanced Equipment and Aerospace Science and Technology of China (6141B061306)。