摘要
The fabrication of high performance CuO based glucose sensors remains a great challenge due to the "trade-off effect" between sensitivity and linear range. In this study, a hierarchical CuO nanostructure with a great number of firecracker-shaped nanorods along the ligament and three-dimensional interconnected nanoporous is obtained by dealloying and post oxidation process of Al-33.3 wt% Cu eutectic alloy ribbons. Because of the precise structural design, not only the number of active sites for glucose electro-oxidation is significantly increased but also the glucose diffusion under high concentration is greatly accelerated, leading to a high sensitivity of 1.18 mA cm^(-2) mM^(-1) and a wider linear range up to 5.53 mM for glucose detection. This work provides a potential approach to design hierarchical nanostructure for other metal oxides with desirable properties for electrocatalytic applications.
基金
supported by the National Natural Science Foundation of China (Grant Nos. 51922089, 51972275 and 51727803)
Science and Technology Coordination Innovation Project in Shaanxi Province (Grant No. 2019KW-024)
Fundamental Research Funds for the Central Universities (Grant No. 310201911fz050)。