期刊文献+

基于深度学习的人脸识别系统在智慧农业领域的应用研究 被引量:1

下载PDF
导出
摘要 随着计算机视觉技术及深度学习算法技术的不断发展,计算机系统对于图像语义的表征能力也越来越强,基于图像或视频方式的生物识别技术也被广泛应用于各个领域,比如监控系统、智慧农业园区、无人驾驶等,通过图像或视频实现自动跟踪、检测及识别。相比其他生物识别技术,最有非侵入性功能的优势,比如需要人眼对准摄像头才能识别的虹膜识别技术,需要手指靠近传感器的指纹识别等,人脸识别中只要人们出现在录像设备视野内即可完成识别,因此即使在用户不希望与系统合作的环境中也可以应用该技术完成识别操作。基于此,人脸识别在我们日常生活中的应用越来越广泛,比如电子支付、人力资源的考核、刑侦搜索等。但是光照、人脸表情、遮挡物等诸多因素均会对人脸识别效果产生直接影响,而基于深度学习的人脸识别算法可以大大提高人脸识别的准确性。文章阐述了深度学习网络的工作原理,总结人脸识别的基本流程,并提出基于深度学习的人脸识别系统设计实例。 With the continuous development of computer vision technology and deep learning algorithm technology,the computer system is becoming more and more capable of representing image semantics.Biometric identification technology based on image or video is also widely used in various fields,such as monitoring system,smart agriculture,unmanned driving,etc.,and thus automatic tracking,detection and recognition are realized through image or video.Compared with other biometric technologies,which have the most advantages of non-invasive function,such as iris recognition technology which requires the eyes to be aimed at the camera,fingerprint recognition which requires the fingers to be close to the sensor,etc.,the face recognition only needs people to complete recognition as long as they appear in the field of vision of the video recording equipment.Therefore,even in the environment where users do not want to cooperate with the system,this technology can be applied to complete the recognition operation.Based on this,face recognition is widely used in our daily life,such as electronic payment,human resources assessment,criminal investigation search and so on.Although many factors,such as illumination,facial expressions,obstructions and so on,will have a direct impact on the face recognition effect,the face recognition algorithm based on deep learning can greatly improve the accuracy of face recognition.This paper expounds the working principle of deep learning network,summarizes the basic process of face recognition,and puts forward a design example of face recognition system based on deep learning.
作者 孙灏
出处 《智慧农业导刊》 2021年第2期36-39,共4页 JOURNAL OF SMART AGRICULTURE
关键词 人脸识别 深度学习 系统设计 face recognition deep learning system design
  • 相关文献

参考文献9

二级参考文献59

  • 1高建坡,王煜坚,杨浩,吴镇扬.一种基于KL变换的椭圆模型肤色检测方法[J].电子与信息学报,2007,29(7):1739-1743. 被引量:15
  • 2洪子泉,Pattern Recognit,1991年,24卷,4期,317页 被引量:1
  • 3李淑秋,数据采集与处理,1989年,4卷,增刊,12页 被引量:1
  • 4Tian Q,J Opt Soc Am,1988年,5卷,10期,1670页 被引量:1
  • 5洪子泉,待发表页 被引量:1
  • 6Penv P S, Arick JJ. Local Facture Analysis: A general statistical theory for object representation [J]. Network: Computation in Neural Systems, 1996, 7(3): 477-500. 被引量:1
  • 7Morimoto C H, Flickner M. Real-time multiple face detection using active illumination [A]. In: Proc the 4th Internationl Conference on Automatic Face and Gesture Recogition [C]. France: Grenoble, March, 2000, 8-13. 被引量:1
  • 8Bradski G R. Computer Vision Face Tracking For Use In A Perceptual User Interface Microcomputer Research Lab, Santa Clara, CA, Intel Corporation, 1998. 被引量:1
  • 9Tang J, Kawato S, Ohya J. Face detection from complex background [J]. International Workshop on Very Low Bitrate Video Coding, Kyoto Reasearch Park, Oct. 29-30, 1999. 被引量:1
  • 10R.Gross,I.Matthews,S.Baker.Appearance-Based Face Recognition and Light Fields.IEEE Trans.Patten Anal.Mach.Intell,vol.26,pp.449-465,2004. 被引量:1

共引文献202

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部