期刊文献+

高分辨率遥感影像的车道级高精地图要素提取 被引量:6

High-precision lane-level map elements extracting based on high-resolution remote sensing image
下载PDF
导出
摘要 高精地图是城市道路场景下自动驾驶必不可少的基础设施之一。针对目前高精地图静态层在生产和更新中存在的采集成本高、周期长、数据处理复杂等问题,本文提出了一整套基于高分辨率遥感影像的高精地图静态层的车道级要素提取方案。首先,通过SURF算法对多时相影像进行配准,同时结合影像的光谱信息对像元进行判断,实现了对车道中动态车辆的检测和去除;然后,基于面向对象的方法提出了一种要素对象的特征选择方法,并结合统计学理论对各要素进行阈值分析,实现了对虚线车道线、人行横道等车道级要素的检测和提取;最后,结合试验数据,验证了本文所提出的基于遥感影像的车道级要素大范围快速提取方案的有效性。 High-precision map is automatically under the city road scene driving one of the necessary infrastructures. Aiming at the problems of the high acquisition cost,long period,and complicated data processing in the production and update of the static layer of high-precision map,the lane-level element extraction scheme of high-precision map static layer based on high-resolution remote sensing image is proposed.Firstly,multi-temporal images are registered by the SURF algorithm,and pixels are judged by combining the spectral information of the image,thus realizing the detection and removal of dynamic vehicles in the lane.Secondly,based on the object-oriented method,a feature selection method of element objects is proposed,and the threshold analysis of each element is carried out in combination with the statistical theory to realize the detection and extraction of lane-level elements such as the dashed lane line crosswalk. Finally,combined with experimental data,the effectiveness of the proposed lane-level elements extraction scheme based on remote sensing image is verified.
作者 侯翘楚 李必军 蔡毅 HOU Qiaochu;LI Bijun;CAI Yi(State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,Wuhan 430079,China)
出处 《测绘通报》 CSCD 北大核心 2021年第3期38-43,共6页 Bulletin of Surveying and Mapping
基金 国家自然科学基金(41671441) 军队预研科研项目。
关键词 高精地图 遥感影像 目标检测与去除 面向对象 对象特征选择 high-precision map remote sensing images target detection and removal object-oriented object features selection
  • 相关文献

参考文献7

二级参考文献62

  • 1刘芳,游雄,於建峰,赵晓亮.网络地图的信息传输模型研究[J].测绘通报,2009(10):15-17. 被引量:9
  • 2McCall J C, Trivedi M M. Video-based lane estimation and tracking for driver assistance: survey, system, and evaluation [ J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(1) : 20-37. 被引量:1
  • 3Kim Z W. Robust lane detection and tracking in challenging scenarios [ J]. IEEE Transactions on Intelligent Transportation System, 2008, 9 ( 1 ) : 16-26. 被引量:1
  • 4Wu X W, Peng Y X, Ding D H, et al. Color vision-based multilevel analysis and fusion for road area detection [ C ]//IEEE Intelligent Vehicles Symposium. Eindhoven, Netherlands : IEEE, 2008 : 602-607. 被引量:1
  • 5Zhou S Y, Gong J W, Xiong G M, et al. Road detection using support vector machine based on online learning and evaluation [ C ]//IEEE Intelligent Vehicles Symposium. La Jolla, USA: IEEE, 2010: 256-261. 被引量:1
  • 6Alefs B, Eschemann G, Ramoser H, et al. Road sign detection from edge orientation histograms [ C ]//IEEE Intelligent Vehicles Symposium. Istanbul, Turkey: IEEE, 2007: 993-998. 被引量:1
  • 7Sha Y, Zhang G Y, Yang Y. A road detection algorithm by boosting using feature combination [ C ]//IEEE Intelligent Vehicles Symposium. Istanbul, Turkey: IEEE, 2007 : 364-368. 被引量:1
  • 8Collado J M, Hilario C, De la E A, et al. Detection and classification of road lanes with a frequency analysis [ C ]//IEEE Intelligent Vehicles Symposium. Nevada, USA: IEEE, 2005: 78 -83. 被引量:1
  • 9King H L, Kah P S, Li-Minn A, et al. Lane detection and kalman-based linear-parabolic lane tracking [ C ]// Proceedings of IEEE International Conference on Intelligent Human-Machine Systems and Cybernetics. Hangzhou, Zhejiang: IEEE, 2009: 351-354. 被引量:1
  • 10Jung C R, Kelber C R. Lane following and lane departure using a linear-parabolic model [ J ]. hnage and Vision Computing, 2005, 23(13) : 1192-1202. 被引量:1

共引文献156

同被引文献124

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部