期刊文献+

基于RGB空间的车道线检测与辨识方法 被引量:10

Lane Detection and Identification Algorithm Based on RGB Space
下载PDF
导出
摘要 提出一种利用颜色信息进行车道线检测并且能够分辨黄色或白色车道线的新方法。首先,找出图像中与路面颜色差异较大并且具有合理宽度的像素段;然后在RGB颜色空间利用先验信息对像素段的颜色进行辨识;再用辨识后的像素段分别估计出黄色或白色车道线的颜色分割阈值;最后利用获取的阈值对整幅图像进行车道线检测。实验结果表明,该方法能够在复杂背景环境或路面污染等干扰条件下较好地检测出车道线并能辨识出车道线颜色。本方法简单、有效,且具有一定的鲁棒性。 This paper proposes a new lane detection and color identification algorithm using color information. Firstly, the seg- ments with prominent color difference and reasonable width were located. Secondly, the colors of the located segments were iden- tified with color prior in RGB color space. Thirdly, the yellow and white color thresholds were estimated by the identified seg- ments, respectively. Finally, the yellow and white lane markers were segmented with the thresholds. The experiments results showed that the proposed algorithm is able to estimate the thresholds for segmentation and identify the color of lane marker color and applicable in complex environments such as polluted roads or clutter background. The algorithm is simple, effective, and robust.
作者 杨益 何颖
出处 《计算机与现代化》 2014年第2期86-90,共5页 Computer and Modernization
关键词 车道线检测 车道线辨识 RGB空间 阈值分割 lane detection lane identification RGB space threshold segmentation
  • 相关文献

参考文献8

二级参考文献34

  • 1陈明伟,袁晓华,潘敏,谢汶莉.从道路交通事故统计分析对比谈预防措施[J].中国安全科学学报,2004,14(8):59-63. 被引量:55
  • 2郭江,丰义,朱程辉.基于特征颜色的车牌边缘检测方法[J].新疆大学学报(自然科学版),2007,24(2):248-252. 被引量:2
  • 3刘志强,汪澎,张建华,汪旸,龚标.交通事故再现技术研究现状与发展趋势[J].中国安全科学学报,2007,17(4):16-20. 被引量:16
  • 4M. Bertozzi et al. Artificial vision in road vehicles [A]. Proceedings IEEE Intelligent Vehicle[C] ,2002.7 : 1 258 - 1 271. 被引量:1
  • 5K. Kluge and S. Lakshmanan. A deformable -template approach to lane detection [A]. Proceedings IEEE Intelligent Vehicle[C], 1995.9 : 54 -59. 被引量:1
  • 6Y. Wang, K. Teoh, and D. Shen. Lane detection using spline model[J].Pattern Recognition Letters, 2000,21(8) : 677 - 689. 被引量:1
  • 7F. Gibbs and B. Thomas. The fusion of multiple image analysis algorithm for robot road following [A]. Proceedings IEEE Image Process[C], 1995.7 : 470 -477. 被引量:1
  • 8C. Rasmussen. Grouping dominant orientation for ill -structured road following[A]. Proceedings IEEE Computer Vision and Pattern Recognition[C], 2004.7:470 - 477. 被引量:1
  • 9K. Redmill, S. Upadhya, A. Krishnamurthy, and U. Ozguner. A lane tracking system for intelligent vehicle application[A]. Proceedings IEEE Intelligent Transportation Systems[ C], 2001.8:273 - 279. 被引量:1
  • 10C. Little. The intelligent vehicle initiative : Advancing 'human - centered 'smart vehicles [J]. Public Roads Magazine, 1997, 61(2):18 -25. 被引量:1

共引文献400

同被引文献86

引证文献10

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部