摘要
讨论一类发展的p(x)-Laplace方程ut=div(a(x,t)up(x)-2u)+f(u,x,t)解的存在唯一性。不同于此前的研究,文中假设a(x,t)≥0,且当x∈Ω时,a(x,t)>0,解的稳定性是建立在一个合理的部分边界条件u(x,t)=0,(x,t)∈Σ1上,其中Σ1■Ω×(0,T)仅仅是一个子流形。
The following evolutionary p(x)-Laplace equations ut=div(a(x,t)up(x)-2u)+f(u,x,t)were discussed,and the existence and the uniqueness of weak solutions were proved.Different from the previous works,it was assumed a(x,t)≥0and a(x,t)x∈Ω>0 in this paper.The stability of weak solutions was based on a reasonable partial boundary value condition u(x,t)=0,(x,t)∈Σ1,whereΣ1■Ω×(0,T)was just a submanifold.
作者
曾羽群
ZENG Yuqun(School of Science,Jimei University,Xiamen 361021,China)
出处
《集美大学学报(自然科学版)》
CAS
2021年第2期119-124,共6页
Journal of Jimei University:Natural Science