摘要
考虑带对流项的多孔介质方程:ut=div(ρα▽um)+∑N i=1bi(um)/xi,(x,t)∈QT=Ω×(0,T).假设对任意的i∈{1,2,…,N},bi(s)是C1函数,且存在常数β,c,使得bi(s)≤c s 1+β,b′i(s)≤c sβ.应用抛物正则化方法,得到了该方程在条件0<α<1时初边值问题解的存在唯一性.
The authors studied diffusion convection equation with boundary degeneracy ut=div(ρ^α▽um)+i=1∑N bi(u^m)/xi,(x,t)∈QT=Ω×(0,T).,for any i∈{1,2,…,N},b i(s)is a C1 function,there are constantsβ,c such that bi(s)≤c|s|^1+β,|b′i(s)|≤c|s|^β.If 0〈α〈1,the existence and the uniqueness of the solutions of the initial-boundary value problem to the equation were obtained by the parabolic regularized method.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2015年第5期829-834,共6页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:11371297
11271153)
高等学校博士学科点专项科研基金(批准号:20140101-20161231)
关键词
多孔介质方程
边界退化
初边值问题
porous medium equation
boundary degeneracy
initial-boundary value problem