期刊文献+

特别的Manásevich-Mawhin连续定理及应用 被引量:1

Special Manásevich-Mawhin Continuation Theorems with Applications
下载PDF
导出
摘要 在运用拓扑度的连续定理时,避免拓扑度的计算也就意味着最大化简化实际问题的处理过程.本文首先给出了一个特别的Manásevich-Mawhin连续定理和几个推论.相对于经典的Manásevich-Mawhin连续定理,在使用这个特别的连续定理及其推论处理实际问题时,我们能够避免计算拓扑度,且可以减少定理使用的条件.更重要的是,验证这个特别的连续定理的条件将更加容易和方便.其次,作为一个应用,本文应用上述特别的Manásevich-Mawhin连续定理研究了一般形式的Rayleigh型p-Lalacian泛函微分方程周期解和正周期解的存在性问题,获得了一些新的充分条件并推广和改进了一些已有的结果. Avoiding the calculation of any topological degree also means to minimize the processing of practical problems when a continuation theorem of topological degree theory is used.In this paper,a special continuation theorem and several corollaries are given.Compared with the classical Manásevich-Mawhin continuation theorem,we can avoid calculating any topological degree and reduce the conditions of the theorem when using this special continuation theorem and its corollaries in applications.More importantly,the conditions for verifying this special continuation theorem will be easier and more convenient.As an application,we use this special continuation theorem and its corollary to study the existence of periodic solutions and positive periodic solutions for a generalized Rayleigh type p-Laplacian equation with deviating arguments and obtain some new sufficient conditions which generalize and improve the known results in the literatures.
作者 周凯 周英告 Zhou Kai;Zhou Yinggao(School of MathemaOcs and Statistics,Central South University,Changsha,Hunan 410083,China)
出处 《数学理论与应用》 2020年第1期19-33,共15页 Mathematical Theory and Applications
基金 partially supported by the Natural Science Foundation of China(No.11871475) the Natural Science Foundation of Hunan Province(No.2019JJ40354) the Degree and Graduate Education Reform Research Project of Hunan Province(No.2020JGYB031) the Graduate Education and Teaching Reform Research Project of Central South University(No.2020JGB020)。
关键词 拓扑度 Manásevich-Mawhin连续定理 Rayleigh型p-Laplacian方程 周期解 正周期解 Topological degree Manásevich-Mawhin continuation theorem Rayleigh type p-Laplacian equation Periodic solution Positive periodic solution
  • 相关文献

参考文献3

二级参考文献18

  • 1鲁世平,葛渭高.具偏差变元的二阶p-Laplacian方程周期解存在性问题[J].数学学报(中文版),2005,48(5):841-850. 被引量:4
  • 2Dancer, E. N.: Boundary value problems for weakly nonlinear ordinary differential equations. Bull. Austral. Math. Soc., 15, 321-328 (1976). 被引量:1
  • 3Fu6ik, S.: Solvability of Nonlinear Equations and Boundary Value Problems, Reidel, Dordrecht, 1980. 被引量:1
  • 4Ding, T., Zanolin, F.: Time-maps for the solvability of periodically perturbed nonlinear During equations. Nonlinear Analysis, 7, 635-654 (1991). 被引量:1
  • 5Del Pino, M., Elgueta, M., Manasevich, R.: A homotopic deformation along p of a Leray-Schauder degree result and existence for (lu'lp-2u')'+ f(t, u) = O, u(O) = u(T) = O,p > 1. J. Differential Equations, 80(1), 1-13 (19s9). 被引量:1
  • 6Del Pino, M., Manasevich, R., Murua, A. E.: Existence and multiplicity of solutions with prescribed period for a second order quasilinear O.D.E.. Nonlinear Anal., 18(1), 79-92 (1992). 被引量:1
  • 7Agarwal, R. P., Lii, H. S., O'Regan, D.: Eigenvalues and the one-dimensional p-Laplacian. J. Math. Anal Appl., 263, 383-400 (2002). 被引量:1
  • 8Liu, B.: Multiplicity results for periodic solutions of a second order quasilinear ODE with asymmetric nonlinearities. Nonlinear Anal., 33(2), 139-160 (1998). 被引量:1
  • 9Manasevich, R., Maqhin, J.: Periodic solutions for nonlinear systems with p-Laplacian-like operators. J. Differential Equations, 145, 367-393 (1998). 被引量:1
  • 10Gains R E,Mawhin J L.Coincidence Degree and Nonlinear Differential Equations[M].Lecture Notes in Math,No.568,Springer-Verlag,1977. 被引量:1

共引文献10

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部