摘要
针对平面四杆(体)机构的瞬心线与重载滚滑副机构构体接触面轮廓设计的关系,为了进行瞬心线的解析法研究,进行了以下研究。1)基于直线方程、矩阵运算和坐标变换导出了平面四体机构瞬心的计算式,即瞬心线方程。2)分析了无穷远瞬心和歧运动位。3)以曲柄摇杆机构为例绘制了瞬心线。4)根据双摇杆机构主动摇杆的摆动范围及运动的连续性,绘制了5种情况的瞬心线,没有绘出在歧运动位有可能出现的另一段。瞬心线图线验证了所推导的瞬心线方程。该研究可为滚滑副机构的接触廓线设计提供参考依据。
For the relation between the instantaneous velocity center line of a planar four-bar(quabody)mechanism and the contact surface profile design of a heavy-duty rolling and sliding pair mechanism,in order to study the analytic method of the instantaneous velocity line,the following contents are studied.1)Based on the line equation,matrix operation and coordinate transformation,the calculation formula of instantaneous velocity center of planar quabody mechanism,namely instantaneous velocity center line equation,is derived.2)The instantaneous velocity center at infinity and the kinematics bifurcation position are analyzed.3)The instantaneous velocity center line is drawn with crank rocker mechanism as an example.4)According to the swing range and motion continuity of the active rocker of the double rocker mechanism,the instantaneous velocity center lines of five cases are drawn,and the other section that may appear at the other side of kinematics bifurcation position is not drawn.The equation of instantaneous velocity center line is verified by the diagram of instantaneous velocity center line.The research can provide the reference for the contact profile design of rolling and sliding pair mechanism.
作者
刘庆
李春明
刘晓
曹惠
LIU Qing;LI Chun-ming;LIU Xiao;CAO Hui(Shengli College in China University of Petroleum,China University of Petroleum(East China),Dongying 257061,China;Faculty of Mechanical and Electronic Engineering,China University of Petroleum(East China),Qingdao 266580,China)
出处
《应用科技》
CAS
2021年第1期93-97,共5页
Applied Science and Technology
基金
山东省自然科学基金项目(Q2006A08)
中国石油大学胜利学院在线课程建设基金项目(XJKC201804)。
关键词
机构运动学
瞬心线
平面四体机构
歧运动位
坐标变换
解析法
滚滑副
一约束副
二约束副
mechanism kinematics
instantaneous velocity center line
planar quabody mechanism
kinematics bifurcation position
coordinate transformation
analytic method
rolling and sliding pair
monoconstraint pair
biconstraint pair