期刊文献+

基于双分类器的自适应单双手手势识别 被引量:2

Adaptive One-Hand and Two-Hand Gesture Recognition Based on Double Classifiers
原文传递
导出
摘要 针对传统卷积神经网络(CNN)中仅有对单手手势语义进行识别的算法和深度学习手势识别算法中CNN的收敛性差和识别精度低的问题,提出了一种基于两个分类器的自适应单双手手势识别算法以对单手和双手进行识别。该算法的核心是联合两个分类器进行单双手手势识别。首先,采用手数分类器对手势进行分割分组预测,将手势识别转化成部分手势图像识别;其次,采用自适应增强卷积神经网络(AE-CNN)进行手势识别,利用自适应模块分析出现识别误差的原因和反馈模式;最后,在迭代次数和识别结果的基础上进行参数更新。实验结果表明,手数分类器进行手势预测分组的正确概率为98.82%,AE-CNN的收敛性优于CNN和CNN+Dropout,对单手手势的识别率高达97.87%,对基于LSP数据集自建的9类单手手势和10类双手手势的整体模型识别率为97.10%,对复杂背景和不同光照强度下手势的平均识别率为94.00%,并且具有一定的鲁棒性。 Aiming at the problem that the traditional convolutional neural network(CNN)algorithms only recognize semantics of one-hand gestures and the problems of the poor convergence and low recognition accuracy of the deep learning gesture recognition algorithm,an adaptive one-hand and two-hand gesture recognition algorithm based on double classifiers is proposed to recognize single-hand and two-hand gestures.The core of the algorithm is combining two classifiers for single-hand and two-hand gesture recognition.First,the hand number classifier is used to segment and group the gestures,and the gesture recognition is converted into partial gesture image recognition.Second,the adaptive enhanced convolutional neural network(AE-CNN)is used for gesture recognition,and the adaptive module analyzes the cause of the recognition error and feedback mode.Finally,the parameters are updated based on the number of iterations and recognition results.Experimental results show that the correct probability of the hand number classifier for gesture prediction grouping is 98.82%,the convergence of AE-CNN is better than that of CNN and CNN+Dropout,and the recognition rate of one-hand gestures is as high as 97.87%.The overall model recognition rate of 9 types of single-hand gestures and 10 types of double-hand gestures built based on LSP dataset is 97.10%,and the average recognition rate of gestures under complex backgrounds and different light intensities is 94.00%.The proposed algorithm has certain robustness.
作者 张政 徐杨 Zhang Zheng;Xu Yang(College of Big Data and Information Engineering,Guizhou University,Guiyang,Guizhou 550025,China;Guiyang Aluminum Magnesium Design&Research Institute Co.,Ltd.,Guiyang,Guizhou 550009,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2021年第2期78-87,共10页 Laser & Optoelectronics Progress
基金 贵州省科技计划项目(黔科合LH字[2016]7429号) 贵州大学引进人才项目(2015-12)。
关键词 图像处理 特征自适应增强 双分类器 单双手势识别 卷积神经网络 image processing feature adaptive enhancement double classifier one-hand and two-hand gesture recognition convolutional neural network
  • 相关文献

参考文献10

二级参考文献116

  • 1李鑫滨,陈云强,张淑清.基于LS-SVM多分类器融合决策的混合故障诊断算法[J].振动与冲击,2013,32(19):159-164. 被引量:10
  • 2陈锻生,刘政凯.肤色检测技术综述[J].计算机学报,2006,29(2):194-207. 被引量:118
  • 3任雅祥.基于手势识别的人机交互发展研究[J].计算机工程与设计,2006,27(7):1201-1204. 被引量:30
  • 4加玉涛,罗志增.肌电信号特征提取方法综述[J].电子器件,2007,30(1):326-330. 被引量:30
  • 5丁津津.TOF三维摄像机的误差分析及补偿方法研究[D].合肥:合肥工业大学,2011. 被引量:1
  • 6LOWE D G. Distinctive image features from scale-invar- iant keypoints [ J ]. International Journal of Computer Vision, 2004, 60(2) : 91-110. 被引量:1
  • 7KE Y, SUKTHANKAR R. PCA-SIFT: a more distinc- tive representation for local image descriptors[ C ]. Pro- ceedings of the International Conference on Computer Vision and Pattern Recognition. Washington DC, USA: IEEE, 2004: 506-513. 被引量:1
  • 8BAY H, ESS A, TUYTELAARS T, et al. SURF: spee- ded up robust features [ J ]. Computer Vision and Image Understanding, 2008, 110 (3) : 346-359. 被引量:1
  • 9MIKOLAJCZYK K, SCHMID C. A performance evalua- tion of local descriptors [ C ]. Proceedings of the Interna- tional Conference on Computer Vision and Pattern Rec- ognition, Madison, USA: IEEE, 2003: 17-122. 被引量:1
  • 10ABDEL-HAKIM A E, FARAG A A. CSIFT: a SIFT descriptor with color invariant characteristics [ C 1. Pro- ceedings of the International Conference on Computer Vision and Pattern Recognition, Washington DC, USA: IEEE, 2006. 1978-1983. 被引量:1

共引文献150

同被引文献10

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部