期刊文献+

A framework based on sparse representation model for time series prediction in smart city 被引量:1

原文传递
导出
摘要 Smart city driven by Big Data and Internet of Things(loT)has become a most promising trend of the future.As one important function of smart city,event alert based on time series prediction is faced with the challenge of how to extract and represent discriminative features of sensing knowledge from the massive sequential data generated by IoT devices.In this paper,a framework based on sparse representa-tion model(SRM)for time series prediction is proposed as an efficient approach to tackle this challenge.After dividing the over-complete dictionary into upper and lower parts,the main idea of SRM is to obtain the sparse representation of time series based on the upper part firstly,and then realize the prediction of future values based on the lower part.The choice of different dictionaries has a significant impact on the performance of SRM.This paper focuses on the study of dictionary construction strategy and summarizes eight variants of SRM.Experimental results demonstrate that SRM can deal with different types of time series prediction flexibly and effectively.
出处 《Frontiers of Computer Science》 SCIE EI CSCD 2021年第1期99-111,共13页 中国计算机科学前沿(英文版)
基金 This work was supported by the National Natural Science Foundation of China(Grant Nos.61772136,61672159) the Technology Innovation Platform Project of Fujian Province(2014H2005) the Research Project for Young and Middle-aged Teachers of Fujian Province(JT 180045) the Fujian Collaborative Innovation Center for Big Data Application in Governments,the Fujian Engineering Research Center of Big Data Analysis and Processing.
  • 相关文献

参考文献3

二级参考文献27

  • 1Y. LeCun, L. Bottou, Y. Bengio, P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the 1EEE, vol. 86, no. 11, pp. 2278-2324, 1998. 被引量:1
  • 2A. Krizhevsky, I. Sutskever, G. E. Hinton. ImageNet clas- sification with deep convolutional neural networks. In Pro- ceedings of Advances in Neural Information Processing Sys- tems 25, NIPS, Lake Tahoe, Nevada, USA, pp. 1091105, 2012. 被引量:1
  • 3K. Cho, B. van Merinboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio. Learning phrase repre- sentations using RNN encoder-decoder for statistical ma- chine translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Doha, Qatar, pp. 1721734, 2014. 被引量:1
  • 4I. Sutskever, O. Vinyals, Q. V. Le. Sequence to sequence learning with neural networks. In Proceedings of Advances in Neural Information Processing Systems 27, NIPS, Mon- treal, Canada, pp. 3104-3112, 2014. 被引量:1
  • 5D. Bahdanau, K. Cho, Y. Bengio. Neural machine transla- tion by jointly learning to align and translate. In Interna- tional Conference on Learning Representations 2015, San Diego, USA, 2015. 被引量:1
  • 6A. Graves, A. R. Mohamed, G. Hinton. Speech recogni- tion with deep recurrent neural networks. In Proceedings of International Conference on Acoustics, Speech and Sig- nal Processing, IEEE, Vancouver, Canada, pp. 6645-6649, 2013. 被引量:1
  • 7K. Xu, J. L. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. S. Zemel, Y. Bengio. Show, attend and tell: Neural image caption generation with visual atten- tion. In Proceedings of the 32nd International Conference on Machine Learning, Lille, prance, vol. 37, pp. 2048 2057, 2015. 被引量:1
  • 8A. Karpathy, F. F. Li. Deep visual-semantic alignments for generating image descriptions. In Proceedings of IEEE In- ternational Conference on Computer Vision and Pattern Recognition, IEEE, Boston, USA, pp. 3128 3137, 2015. 被引量:1
  • 9R. Lebret, P. O. Pinheiro, R. Collobert. Phrase-based im- age captioning. In Proceedings of the 32nd International Conference on Machine Learning, Lille, Prance, voh 37, pp. 2085 2094, 2015. 被引量:1
  • 10J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, T. Darrell. Long-term recurrent convolutional networks for visual recognition and descrip- tion. In Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, IEEE, Boston, USA, pp. 2625-2634, 2015. 被引量:1

共引文献48

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部