期刊文献+

结合卷积神经网络和最小门控单元注意力的文本情感分析 被引量:18

TEXT SENTIMENT ANALYSIS BASED ON ATTENTION C_MGU
下载PDF
导出
摘要 结合卷积神经网络CNN和最小门控单元MGU各自的优势,融合注意力机制,提出注意力C_MGU神经网络模型。通过CNN的卷积层模块捕捉提取文本的初步特征表示,利用Attention机制和MGU模块对文本的初步特征表示进行关键信息的加强和优化,并将生成的文本深层特征表示输入到Softmax层进行回归处理。对公开数据集IMBD、Sentiment140进行情感分类实验,结果表明该模型能够强化对文本的句义理解,可进一步学习序列相关特征,有效地提高情感分类的准确率。 Combining the advantages of convolutional neural network(CNN)and minimum gating unit(MGU),and integrating the attention mechanism,this paper proposes an attention C_MGU neural network model.Through the CNN convolutional layer module,the preliminary feature representation of the extracted text was captured,and the key information of the preliminary feature representation of text was further enhanced and optimized by using the attention mechanism and the MGU module.The generated text deep feature representation was input into the Softmax layer for regression processing.Sentiment classification experiments are carried out on the open data sets IMBD and sentiment140.The results show that our model can enhance the understanding of sentence meaning,further learn the sequence related features,and effectively improve the accuracy of sentiment classification.
作者 徐菲菲 芦霄鹏 Xu Feifei;Lu Xiaopeng(School of Computer Science and Technology,Shanghai Electric Power University,Shanghai 200090,China)
出处 《计算机应用与软件》 北大核心 2020年第9期75-80,125,共7页 Computer Applications and Software
基金 国家自然科学基金项目(61305094)。
关键词 情感分析 C_MGU 注意力机制 Sentiment analysis C_MGU Attention mechanism
  • 相关文献

参考文献5

二级参考文献36

  • 1Y. LeCun, L. Bottou, Y. Bengio, P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the 1EEE, vol. 86, no. 11, pp. 2278-2324, 1998. 被引量:1
  • 2A. Krizhevsky, I. Sutskever, G. E. Hinton. ImageNet clas- sification with deep convolutional neural networks. In Pro- ceedings of Advances in Neural Information Processing Sys- tems 25, NIPS, Lake Tahoe, Nevada, USA, pp. 1091105, 2012. 被引量:1
  • 3K. Cho, B. van Merinboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio. Learning phrase repre- sentations using RNN encoder-decoder for statistical ma- chine translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Doha, Qatar, pp. 1721734, 2014. 被引量:1
  • 4I. Sutskever, O. Vinyals, Q. V. Le. Sequence to sequence learning with neural networks. In Proceedings of Advances in Neural Information Processing Systems 27, NIPS, Mon- treal, Canada, pp. 3104-3112, 2014. 被引量:1
  • 5D. Bahdanau, K. Cho, Y. Bengio. Neural machine transla- tion by jointly learning to align and translate. In Interna- tional Conference on Learning Representations 2015, San Diego, USA, 2015. 被引量:1
  • 6A. Graves, A. R. Mohamed, G. Hinton. Speech recogni- tion with deep recurrent neural networks. In Proceedings of International Conference on Acoustics, Speech and Sig- nal Processing, IEEE, Vancouver, Canada, pp. 6645-6649, 2013. 被引量:1
  • 7K. Xu, J. L. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. S. Zemel, Y. Bengio. Show, attend and tell: Neural image caption generation with visual atten- tion. In Proceedings of the 32nd International Conference on Machine Learning, Lille, prance, vol. 37, pp. 2048 2057, 2015. 被引量:1
  • 8A. Karpathy, F. F. Li. Deep visual-semantic alignments for generating image descriptions. In Proceedings of IEEE In- ternational Conference on Computer Vision and Pattern Recognition, IEEE, Boston, USA, pp. 3128 3137, 2015. 被引量:1
  • 9R. Lebret, P. O. Pinheiro, R. Collobert. Phrase-based im- age captioning. In Proceedings of the 32nd International Conference on Machine Learning, Lille, Prance, voh 37, pp. 2085 2094, 2015. 被引量:1
  • 10J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, T. Darrell. Long-term recurrent convolutional networks for visual recognition and descrip- tion. In Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, IEEE, Boston, USA, pp. 2625-2634, 2015. 被引量:1

共引文献258

同被引文献141

引证文献18

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部