期刊文献+

文本情感分析的深度学习方法 被引量:16

DEEP LEARNING METHOD FOR TEXT SENTIMENT ANALYSIS
下载PDF
导出
摘要 情感分析方法从浅层学习不断地向深度学习探索。在深度学习当中,循环神经网络(RNN)由于学习层数的加深,会导致一定的梯度弥散的问题,由此人们提出一种长短时记忆(LSTM)网络模型解决该问题。提出一种神经网络架构模型——Multi GRU,采用LSTM的一个重要变种GRU(Gated Recurrent Unit)进行模型构建。Multi GRU利用GRU进行多层堆叠,以减少信息丢失。实验论证该模型在损失等方面的表现比LSTM等模型更好。 Sentiment analysis methods continuously explore from shallow learning to deep learning.In the deep learning, recurrent neural network(RNN) due to the deepening of the number of learning layers, leads to a problem of vanishing gradient. Thus, long short-term memory(LSTM) network model was proposed to solve the problem. We proposed a neural network architecture model: MultiGRU. The model used LSTM’s an important variant GRU. MultiGRU used GRU for multi-layer stacking to reduce information loss. Experimental results show that the model is better than LSTM in terms of loss and so on.
作者 邢长征 李珊 Xing Changzheng,Li Shan(1.School of Electronics and Information Engineering, Liaoning Technical University, Huludao 125105, Liaoning, Chin)
出处 《计算机应用与软件》 北大核心 2018年第8期102-106,共5页 Computer Applications and Software
关键词 情感分析 深度学习 LSTM MultiGRU Sentiment analysis Deep learning LSTM MultiGRU
  • 相关文献

参考文献13

二级参考文献217

  • 1丛爽,戴谊.递归神经网络的结构研究[J].计算机应用,2004,24(8):18-20. 被引量:22
  • 2戴谊,丛爽.递归神经网络学习速率研究[J].系统工程与电子技术,2005,27(5):942-947. 被引量:2
  • 3朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 4Ku C C,Lee K Y.Diagonal recurrent neural networks based control using adaptive learning rates[C]//Pro of the 31st Conference on Decision and Control,1992:3485-3490. 被引量:1
  • 5Campolucci P,Uncini A.On-line learning algorithms for locally recurrent neural networks[J].IEEE Trans on Neural Networks,1999, 10(2):253-271. 被引量:1
  • 6戴谊,丛爽.递归神经网络稳定性分析[C].中国控制与决策学术年会论文集.沈阳:东北大学出版社,2004:443-447. 被引量:2
  • 7BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36. 被引量:1
  • 8BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127. 被引量:1
  • 9HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554. 被引量:1
  • 10BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160. 被引量:1

共引文献1756

同被引文献122

引证文献16

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部