期刊文献+

Energy efficient virtual machine migration approach with SLA conservation in cloud computing 被引量:4

云计算中SLA守恒的高效虚拟机迁移方法
下载PDF
导出
摘要 In the age of online workload explosion,cloud users are increasing exponentialy.Therefore,large scale data centers are required in cloud environment that leads to high energy consumption.Hence,optimal resource utilization is essential to improve energy efficiency of cloud data center.Although,most of the existing literature focuses on virtual machine(VM)consolidation for increasing energy efficiency at the cost of service level agreement degradation.In order to improve the existing approaches,load aware three-gear THReshold(LATHR)as well as modified best fit decreasing(MBFD)algorithm is proposed for minimizing total energy consumption while improving the quality of service in terms of SLA.It offers promising results under dynamic workload and variable number of VMs(1-290)allocated on individual host.The outcomes of the proposed work are measured in terms of SLA,energy consumption,instruction energy ratio(IER)and the number of migrations against the varied numbers of VMs.From experimental results it has been concluded that the proposed technique reduced the SLA violations(55%,26%and 39%)and energy consumption(17%,12%and 6%)as compared to median absolute deviation(MAD),inter quartile range(IQR)and double threshold(THR)overload detection policies,respectively. 随着在线工作量的激增,云用户呈指数级增长。然而,云环境下需求下单大规模数据中心将导致高能耗。因此,优化资源利用对于提高云数据中心的能效至关重要。现有文献大多关注虚拟机(VM)整合,以简化服务水平协议为代价来提高能效。本文提出了负载感知的三齿轮阈值(LATHR)和改进的最佳拟合减少(MBFD)算法,在提高服务质量的同时,最大限度地降低总能耗。在单个主机上分配的动态工作负载和可变数量的虚拟机(1-290)下,提供了有效结果。实验结果通过SLA、能量消耗、指令能量比(IER)以及相对于不同虚拟机数量的迁移次数来衡量。实验结果表明,与中位数绝对偏差(MAD)、四分位范围(IQR)和双阈值(THR)过载检测策略相比,该技术SLA违反率分别降低了55%、26%和39%,能耗分别降低了17%、12%和6%。
出处 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第3期760-770,共11页 中南大学学报(英文版)
关键词 cloud computing energy efficiency three-gear threshold resource allocation service level agreement 云计算 能效 三档阈值 资源分配 服务水平协议
  • 相关文献

参考文献1

二级参考文献18

  • 1SEDAGHAT M, HERNANDEZ F, ELMROTH E. Unifying cloud management: Towards overall governance of business level objectives [C]// 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid). Newport Beach: IEEE, 2011: 591-597. 被引量:1
  • 2HE Dian, WU Min, HU Chun-hua. Load-balancing and low cost cloud data replica distribution method in Internet of Things environment [J]. Journal of Central South University (Science and Technology), 2012, 43(4): 1355—1361. (in Chinese). 被引量:1
  • 3HOOPER A. Green computing [J]. Communications of the ACM, 2008,51(10): 1-13. 被引量:1
  • 4RANGANATHAN P, Recipe for efficiency: principles of power-aware computing [J]. Communications of the ACM, 2010, 53(4): 60-67. 被引量:1
  • 5LEE Y C, ZOMAYA A Y. Energy efficient utilization of resources in cloud computing systems [J]. The Journal of Supercomputing, 2012, 60 (2): 268-280. 被引量:1
  • 6BARROSO L A, HOLZLE U. The case for energy-proportional computing [J]. Computer, 2007, 40(12): 33—37. 被引量:1
  • 7BOHRER P, ELNOZAHY E N, KELLER T, KISTLER M, LEFURGY C, MCDOWELL C, RAJAMONY R. The case for power management in web servers [M]. Netherlands: Springer, 2002: 261-289. 被引量:1
  • 8SONG Y, WANG H, LI Y, FENG B, SUN Y. Multi-tiered on-demand resource scheduling for VM-based data center [C]// Proceedings of the 9th IEEE/ACM International Symposium on Cluster Computing and the Grid. Washington: IEEE Computer Society, 2009: 148—155. 被引量:1
  • 9STRACK C. Performance and power management for cloud infrastructures [C]// IEEE 3rd International Conference on Cloud Computing. Miami: IEEE, 2010: 329~336. 被引量:1
  • 10HANSON H, KECKLER S W, GHIASI S, RAJAMANI K,RAWSON F, RUBIO J. Thermal response to DVFS: Analysis with an Intel Pentium M [C]// Proceedings of the 2007 International Symposium on Low Power Electronics and Design. New York: ACM,2007:219-224. 被引量:1

共引文献11

同被引文献37

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部