摘要
通过航天器大机动时直线加速场下陀螺光纤环的有限元分析,得出光纤环在加速场下的形变机理。基于各向异性复合材料理论,采用细观力学有限元方法,对光纤环代表性体积单元施加周期边界条件,分析得出光纤环的等效材料参数。再利用有限元程序ANSYS建立光纤环组件的空间有限元模型,施加加速度场,并建立接触单元分析形变过程中的结构接触耦合影响。分析结果表明:在加速场的作用下,光纤环形变的主要原因包括光纤环组件中的U型槽和顶盖形变后与光纤环的接触耦合作用,以及U型槽和顶盖结构的形变引起光纤环和光纤环本体结构的形变。
Through the finite element analysis of gyroscope fiber-optical ring under the linear acceleration field of spacecraft in large maneuvering motion,the deformation mechanism of the fiber-optical ring was obtained.Based on the theoretical knowledge of anisotropic materials,the micro-mechanics finite element method was used to apply periodic boundary conditions to the representative volume element(RVE)of the fiber-optical ring.Therefore,the equivalent material parameters of the fiber-optical ring were analyzed.The finite element program ANSYS was adopted to establish the spatial finite element model of the fiber-optical ring assembly and apply the acceleration field.The contact element was established to analyze the structural contact coupling effect during the deformation process.The analysis results show that the U-shaped structure and top cover of the fiber-optical ring assembly structure will contact with the fiber-optical ring after deformation under the action of acceleration field.In addition,the U-shaped structure and top cover structure will deform under the action of inertial force,which will affect the deformation of the fiber-optical ring.
作者
王斌华
黄迟航
胡桥
孔军
陈平
WANG Binhua;HUANG Chihang;HU Qiao;KONG Jun;CHEN Ping(Key Laboratory of Road Construction Technology and Equipment(Ministry of Education),Chang’an University,Xi’an 710064,China;Key Laboratory of Intelligent Robots of Shaanxi Province,Xi’an Jiaotong University,Xi’an 710049,China;School of Mechanical Engineering,Northwestern Polytechnical University,Xi’an 710072,China;Xi’an Flight Automatic Control Research Institute,Aviation Industry Corporation of China,Xi’an 710065,China)
出处
《应用光学》
CAS
CSCD
北大核心
2021年第2期360-370,共11页
Journal of Applied Optics
基金
航空基金项目(ASFC-20180870004)。
关键词
光纤环
细观力学
代表性体积单元
加速度场
形变机理
fiber-optical ring
micro-mechanics
representative volume element
acceleration field
deformation mechanism