摘要
研究了一类G-Brown运动驱动的中立型随机时滞微分方程的指数稳定性.在G-框架意义下,运用合适的Lyapunov-Krasovskii泛函,中立型时滞微分方程理论以及随机分析技巧,证明了所研究方程平凡解的p-阶矩指数稳定性,得到了所研究方程平凡解是p-阶矩指数稳定的充分条件.最后通过例子说明所得的结果.
This paper is concerned with the stability of neutral stochastic delay differential equations driven by G-Brownian motion(G-NSDDEs).More precisely,it devotes to prove the pth moment exponential stability of the trivial solution by applying a suitable Lyapunov-Krasovskii functional,neutral delay differential equations theory,and stochastic analysis technique in the G-framework.Some sufficient conditions for the pth moment exponential stability of the above mentioned equations are derived.Finally,an example is presented to illustrate the effectiveness of the obtained theory.
作者
李光洁
杨启贵
LI Guang-jie;YANG Qi-gui(School of Mathematics and Statistics,Guangdong University of Foreign Studies,Guangzhou 510006,China;Department of Mathematics,South China University of Technology,South China University of Technology,Guangzhou 510640,China)
出处
《高校应用数学学报(A辑)》
北大核心
2021年第1期45-52,共8页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
国家自然科学基金(11901398,12071151,11871225)。