期刊文献+

自具微孔聚合物在渗透汽化膜分离中的应用进展 被引量:1

Application Progress of Polymers of Intrinsic Microporosity in Pervaporation Membrane Separation
下载PDF
导出
摘要 介绍了自具微孔聚合物(PIMs)及其改性膜材料在渗透汽化膜分离领域中的应用研究进展,评述了在优先脱有机物、优先脱水以及有机混合物分离3个领域中所应用的PIMs膜的分子结构设计、改性方法以及分离效果。PIMs是一种依靠自身分子扭曲而具有大量微孔的新型聚合物,具有憎水性以及均一的孔结构,对于不同体系中的目标分离物均有较好的分离特性,有望成为通用的渗透汽化膜材料。认为开发更多种类的新型PIMs材料及其更多的分离应用,并且有必要关注如何实现PIMs合成的工业放大和提高PIMs膜应用的稳定性等问题。 The application progresses of polymers of intrinsic microporosity(PIMs)and its modified membrane materials in pervaporation membrane separation have been introduced.It was mainly reviewed that the molecular structure design,modification method,and separation performances of PIMs membranes in pervaporation separation of organic compounds from water,water from organic compounds and organic mixtures.PIMs are a new type of polymer with a large number of micropores relying on its own molecular distortion,and it have good separation performances for various targets from different mixtures due to the hydrophobicity and uniform microporous structures.Thus,PIMs are expected to be a kind of versatile membrane materials for pervaporation.It considered that,more types of PIMs with novel structures should be developed,and the industrial scale-up of PIMs synthesis and the improvement of application stability should be concerned.
作者 霍朝伟 吴奕辰 周远浩 赵炳钰 叶宏 HUO Chaowei;WU Yichen;ZHOU Yuanhao;ZHAO Bingyu;YE Hong(Beijing Laboratory of Food Quality and Safety,Beijing Technology and Business University;Key Laboratory of Brewing Molecular Engineering of China Light Industry,Beijing Technology and Business University,Beijing 100048,China)
出处 《水处理技术》 CAS CSCD 北大核心 2021年第2期1-6,26,共7页 Technology of Water Treatment
基金 国家自然科学基金面上项目(31871749) 国家自然科学基金青年基金项目(21503007) 酒类风味品质与安全科研创新团队项目(PXM2019-014213-000007) 北京市自然科学基金(2172020)。
关键词 自具微孔聚合物 渗透汽化 膜分离 polymers of intrinsic microporosity pervaporation membrane separation
  • 相关文献

参考文献2

二级参考文献51

  • 1Maly K E. Journal of Materials Chemistry, 2009, 19(13): 1781-1787. 被引量:1
  • 2McKeown N B, Makhseed S, Budd P M. Chemical Communications, 2002, 2780-2781. 被引量:1
  • 3Tsyurupa M P, Davankov V A. Reactive & Functional Polymers, 2002, 53(2/3): 193-203. 被引量:1
  • 4Cote A P, Benin A I, Ockwig N W, O'Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310(5751): 1166-1170. 被引量:1
  • 5Jiang J X, Su F, Trewin A, Wood C D, Campbell N L, Niu H, Dickinson C, Ganin A Y, Rosseinsky M J, Khimyak Y Z, Cooper A I. Angewandte Chemie-International Edition, 2007, 46(45): 8574-8578. 被引量:1
  • 6Jiang J X, Cooper A I. Top of Current Chemistry. Verlag Berlin Heidelberg: Springer, 2010. 293: 1-33. 被引量:1
  • 7Ben T, Ren H, Ma S Q, Cao D P, Lan J H, Jing X F, Wang W C, Xu J, Deng F, Simmons J M, Qiu S L, Zhu G S. Angewandte Chemie-International Edition, 2009, 48(50): 9457-9460. 被引量:1
  • 8Cooper A I. Advanced Materials, 2009, 21(12): 1291-1295. 被引量:1
  • 9McKeown N B. Journal of Materials Chemistry, 2000, 10(9): 1979-1995. 被引量:1
  • 10McKeown N B, Hanif S, Msayib K, Tattershall C E, Budd P M. Chemical Communications, 2002, 2782-2783. 被引量:1

共引文献16

同被引文献14

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部