期刊文献+

基于反向学习的状态空间模型进化算法 被引量:1

State-space Model Evolution Algorithm Based on Opposite Learning
下载PDF
导出
摘要 由于状态空间模型进化算法(SEA)易受初始种群的影响,精度不高,容易早熟等问题。因此,提出了一种基于反向学习的状态空间模型进化算法(OLSEA)。通过对状态进化矩阵G重新构造实现全局搜索,增强了全局探索和局部搜索能力;算法结合了反向学习策略,提高了算法搜索效率,增强了跳出局部最优的能力;利用8种基准测试函数对算法有效性分析。仿真实验表明,OLSEA在搜索能力,收敛精度和计算结果的稳定性等方面均有大幅提升。 To overcome the shortcomings of evolution algorithm based on sate-space(SEA) such as easy to be affected by the initial population,premature convergence, low accuracy and poor ability to escape from local optimum.Therefore,this paper proposed a state-space model evolution algorithm based on opposite-learning(OLSEA) Sate evolution G was reconstructed to achieve global search,which enhances the global exploration and local search capabilities;The algorithm combines opposite-learning strategy to improve the search efficiency of the algorithm and enhance the ability to jump out of the local optimum;The effectiveness of the algorithm is analyzed through 8 benchmark test functions. Simulation experiments show that OLSEA has greatly improved its search capability,convergence accuracy and stability of calculation results.
出处 《工业控制计算机》 2021年第2期91-93,共3页 Industrial Control Computer
关键词 状态空间模型 进化算法 反向学习 state-space evolutionary algorithm opposition-based learning
  • 相关文献

参考文献7

二级参考文献54

  • 1恽为民,席裕庚.遗传算法的全局收敛性和计算效率分析[J].控制理论与应用,1996,13(4):455-460. 被引量:113
  • 2薛定宇,赵春娜.分数阶系统的分数阶PID控制器设计[J].控制理论与应用,2007,24(5):771-776. 被引量:162
  • 3KIM B M. A study on the convergence of genetic algorithms[ J]. Computers and Industrial Engineering, 1997, 33(3) : 581 - 588. 被引量:1
  • 4HE J, KANG L, CHEN Y. Convergence of genetic evolution algo- rithms for optimization [ J]. Parallel Algorithms and Applications, 1995, 4(1) : 37 - 56. 被引量:1
  • 5RIGAL L, TRUFFET L. A new genetic algorithm specifically based on mutation and selection [ J]. Advances in Applied Probability, 2007, 39(1) : 141 - 161. 被引量:1
  • 6毛盈旎.基于状态空间模型仿生算法的多目标无功优化[D].长沙:长沙理工大学,2009. 被引量:1
  • 7Jinling Du, Chunxiao Wang, Feng Zhang. Multi obiective Optimization of Bus Dispatching Based on Improved Genetic Algorithm[C]//2011 Seventh International Conference on Computational Intelligence and Security. China : IEEE, 2011. 被引量:1
  • 8Minan TANG, Enen REN, Chunyan ZHAO. Route Optirui zation for Bus Dispatching Based on Genetic Algorithm-Ant Colony Algorithm[C]//2009 International Conference on In- formation Management, Innovation Management and Indus trial Engineering. China : IEEE, 2009. 被引量:1
  • 9Mavrovouniotis M,Yang S X.Genetic algorithms with adaptive immigrants for dynamic environments[C] //20131EEE Congress on Evolutionary Computation.Cancun,Mexico,June 20-23,2013:2130-2137. 被引量:1
  • 10Tominaga Y,Okamoto S,Wakao Y,et al.Binary-based topology optimization of magnetostatic shielding by a hybrid evolutionary algorithm combining genetic algorithm and extended compact genetic algorithm[J].Magnetics,2013,49(5):2093-2096. 被引量:1

共引文献84

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部