期刊文献+

基于局部搜索增强策略的自适应反向学习布谷鸟算法 被引量:5

Adaptive Opposition-Based Learning Cuckoo Algorithm Based on Local Search Enhancement Strategy
原文传递
导出
摘要 为了提高基本布谷鸟搜索算法求解多维函数优化问题的性能,提出一种基于局部搜索增强策略的自适应反向学习布谷鸟算法.在基本CS算法完成Levy Flights全局寻优后,采用局部搜索增强策略更新种群空间,增加种群多样性,避免算法陷入局部最优;自适应发现概率用于调节全局寻优和局部求精之间的平衡;反向学习扰动机制嵌入布谷鸟算法作为局部开采技术,增加算法找到最优解的概率.实验结果表明,改进算法能够有效地提高CS算法的收敛速度并改善解的质量,具有一定的鲁棒性. In order to improve the performance of basic cuckoo search algorithm in solving multi-dimensional function optimization problems,an adaptive Opposition-Based learning cuckoo algorithm based on local search enhancement strategy is proposed.After performing the Levy flight global optimization,the local search strategy is used to update the population space to increase the diversity of the population,and avoid the algorithm falling into the local optimum;the adaptive discovery probability is used to adjust the balance between the global optimization and the local accuracy;the Opposition-Based learning disturbance mechanism is embedded in the cuckoo algorithm as the local exploitation technology to increase the probability of finding the best solution.The simulation experiments show that the proposed algorithm can improve the convergence speed and the quality of the solutions effectively it has certain robustness.
作者 张燕 袁书卷 达列雄 周军 ZHANG Yan;YUAN Shu-juan;DA Lie-xiong;ZHOU Jun(School of Mathematics and Computer Science,Shaanxi University of Technology,Hanzhong 723000,China;School of Education Science,Shaanxi University of Technology,Hanzhong 723000,China)
出处 《数学的实践与认识》 北大核心 2020年第20期191-200,共10页 Mathematics in Practice and Theory
基金 陕西理工大学科研基金项目(SLGKY2017-07)。
关键词 布谷鸟搜索算法 反向学习 自适应 局部搜索策略 cuckoo search algorithm opposition-Based learning adaptive local search strat
  • 相关文献

参考文献5

二级参考文献74

  • 1贺兴时,李娜,杨新社,余兵.多目标布谷鸟搜索算法[J].系统仿真学报,2015,27(4):731-737. 被引量:17
  • 2刘志刚,李言,李淑娟.基于蚁群算法的Job-Shop多资源约束车间作业调度[J].系统仿真学报,2007,19(1):216-220. 被引量:19
  • 3Kennedy J, Eberhart RC. Particle swarm optimization. In: Proc. of the IEEE Int’l Conf. on Neural Networks. Piscataway: IEEE Inc., 1995. 1942-1948. [doi: 10.1109/ICNN. 1995.488968]. 被引量:1
  • 4Eberhart RC, Kennedy J. A new optimizer using particle swarm theory. In: Proc. of the 6th Int’l Symp. on Micro Machine and Human Science. Piscataway: IEEE Inc., 1995. 39-43. [doi: 10.1109/MHS.1995.494215]. 被引量:1
  • 5Dorigo M, Maniezzo V, Colomi A. The ant system: Optimization by a colony of cooperating agents. IEEE Trans, on Systems, Man, and Cybernetics, Part B, 1996,26(1):29-41. [doi: 10.1109/3477.484436]. 被引量:1
  • 6Clerc M. Particle Swarm Optimization. Landon: Wiley-ISTE, 2006. 被引量:1
  • 7Karaboga D. An idea based on honey bee swarm for numerical optimization. Technical Report, TR-06, Computer Engineering Department, Engineering Faculty, Erciyes University, 2005. 被引量:1
  • 8Chen H, Cui DW, Cui YA, Tao YQ, Liang K. Ethnic group evolution algorithm. Ruan Jian Xue Bao/Joumal of Software, 2010, 21(5):978-990 (in Chinese with English abstract), http://www.jos.org.cn/1000-9825/3484.htm [doi: 10.3724/SP.J.1001.2010. 03484]. 被引量:1
  • 9Yang XS, Deb S. Cuckoo search via Levy flights. In: Abraham A, Carvalho A, Herrera F, et al., eds. Proc. of the World Congress on Nature and Biologically Inspired Computing (NaBIC 2009). Piscataway: IEEE Publications, 2009. 210-214. [doi: 10.1109/ NABIC.2009.5393690]. 被引量:1
  • 10Yang XS, Deb S. Engineering optimisation by cuckoo search. Int’l Journal of Mathematical Modeling and Numerical Optimisation, 2010,l(4):330-343. [doi: 10.1504/IJMMN0.2010.03543]. 被引量:1

共引文献182

同被引文献45

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部