摘要
采用实验和分子动力学模拟相结合的方式对多孔铝硅酸盐陶瓷性质进行研究,使用Materials Studio软件建立了SiO_(2):Al_(2)O_(3)化学分子比例分别为3∶1、2∶1、3∶2、1∶1、2∶3、1∶2、1∶3多孔铝硅酸盐模型。用软件中的Forcite、VAMP等模块对模型进行运算后得到该模型的导热率、密度、定压比热容、孔隙率和比表面积等数据。结果表明随着Al2O3所占比例增大,密度、定压比热容、导热率、比表面积和孔隙率都在增加,其中导热率整体变化呈分段线性增加趋势,而定压比热容和孔隙率增加缓慢。同时在实验中把刚玉粉(Al_(2)O_(3))、硅藻土(SiO_(2))及可溶性淀粉机械混合后制作成陶瓷胚体,经烧制得到多孔铝硅酸盐陶瓷后利用SEM观察多孔陶瓷内部孔隙,发现实验观察到的多孔陶瓷内部结构变化引起的热物性变化与分子动力学模拟的结果相互验证。
The combination of experiments and molecular dynamics simulations is used to study the properties of porous aluminosilicate ceramics.First,the Material Studio software is used to establish the SiO_(2)∶Al_(2)O_(3)chemical molecular ratio of 3∶1,2∶1,3∶2,1∶1,2∶3,1∶2,1∶3 porous aluminosilicate models.Forcite,VAMP and other modules in the software are used to calculate the model's thermal conductivity,density,constant pressure specific heat capacity,porosity and specific surface area data.The results show that as the proportion of Al2O3 increases,the density,constant pressure specific heat capacity,thermal conductivity,specific surface area and porosity all increase.Among them,the overall change of constant pressure specific heat capacity and thermal conductivity shows a piecewise linear increase trend,but constant pressure specific heat capacity and pore rate increases slowly.At the same time,in the experiment,the corundum powder(Al_(2)O_(3)),diatomaceous earth(SiO_(2))and soluble starch are mechanically mixed into a ceramic embryo body.After firing into a porous ceramic,the internal pores of the porous ceramic are observed by SEM.It is found that the thermal properties changes caused by the internal structure changes of porous ceramics and the molecular dynamics simulation results are mutually verified.
作者
官云许
杨启容
何卓亚
刘亭
王力伟
赵康
GUAN Yunxu;YANG Qirong;HE Zhuoya;LIU Ting;WANG Liwei;ZHAO Kang(College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266000, China)
出处
《功能材料》
EI
CAS
CSCD
北大核心
2021年第2期2153-2160,共8页
Journal of Functional Materials
基金
国家自然科学基金资助项目(51701102)。
关键词
复合相变
多孔铝硅酸盐陶瓷
分子动力学模拟
孔隙
热物性
composite phase transition
porous aluminosilicate ceramics
molecular dynamics simulation
porosity
thermophysical properties