期刊文献+

Influence of bedding structure on stress-induced elastic wave anisotropy in tight sandstones 被引量:2

下载PDF
导出
摘要 To understand the evolution of stress-induced elastic wave anisotropy,three triaxial experiments were performed on sandstone specimens with bedding orientations parallel,perpendicular,and oblique to the maximum principal stress.P-wave velocities along 64 different directions on each specimen were monitored frequently to understand the anisotropy change at various stress levels by fitting Thomsen’s anisotropy equation.The results show that the elastic wave anisotropy is very sensitive to mechanical loading.Under hydrostatic loading,the magnitude of anisotropy is reduced in all three specimens.However,under deviatoric stress loading,the evolution of anisotropic characteristics(magnitude and orientation of the symmetry axis)is bedding orientation dependent.Anisotropy reversal occurs in specimens with bedding normal/oblique to the maximum principal stress.P-wave anisotropyε0 is linearly related to volumetric strain Sv and dilatancy,indicating that stress-induced redistribution of microcracks has a significant effect on P-wave velocity anisotropy.The closure of initial cracks and pores aligned in the bedding direction contributes to the decrease of the anisotropy.However,opening of new cracks,aligned in the maximum principal direction,accounts for the increase of the anisotropy.The experimental results provide some insights into the microstructural behavior under loading and provide an experimental basis for seismic data interpretation and parameter selection in engineering applications.
出处 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第1期98-113,共16页 岩石力学与岩土工程学报(英文版)
基金 The research was partially supported by the National Natural Science Foundation of China(Grant Nos.41902297,41872210) the Natural Science Foundation of Hubei Province(Grant No.2018CFB292) Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z017006).
  • 相关文献

参考文献2

二级参考文献8

共引文献23

同被引文献19

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部