期刊文献+

Interactive roles of geometrical distribution and geomechanical deformation of fracture networks in fluid flow through fractured geological media 被引量:2

下载PDF
导出
摘要 In this study,the combined effects of geometrical distribution and geomechanical deformation of fracture networks on fluid flow through fractured geological media are investigated numerically.We consider a finite-sized model domain in which the geometry of fracture systems follows a power-law length scaling.The geomechanical response of the fractured rock is simulated using a hybrid finitediscrete element model,which can capture the deformation of intact rocks,the interaction of matrix blocks,the displacement of discrete fractures and the propagation of new cracks.Under far-field stress loading,the locally variable stress distribution in the fractured rock leads to a stress-dependent variable aperture field controlled by compression-induced closure and shear-induced dilatancy of rough fractures.The equivalent permeability of the deformed fractured rock is calculated by solving for the fracture-matrix flow considering the cubic relationship between fracture aperture and flow rate at each local fracture segment.We report that the geometrical connectivity of fracture networks plays a critical role in the hydromechanical processes in fractured rocks.A well-connected fracture system under a high stress ratio condition exhibits intense frictional sliding and large fracture dilation/opening,leading to greater rock mass permeability.However,a disconnected fracture network accommodates much less fracture shearing and opening,and has much lower bulk permeability.We further propose an analytical solution for the relationship between the equivalent permeability of fractured rocks and the connectivity metric(i.e.percolation parameter)of fracture networks,which yields an excellent match to the numerical results.We infer that fluid flow through a well-connected system is governed by traversing channels(forming an“in parallel”architecture)and thus equivalent permeability is sensitive to stress loading(due to stress-dependent fracture permeability),whilst fluid flow through a disconnected system is more ruled by matrix(linkin
出处 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第4期780-792,共13页 岩石力学与岩土工程学报(英文版)
基金 support from Swiss National Science Foundation(Grant No.IZLCZ0_189882) funded by PRC-CNRS Joint Research Project(Grant No.5181101856) supported by the Korea-EU Joint Research Support Program of the National Research Foundation of Korea through a grant funded by the Korean Government’s Ministry of Science,ICT and Future Planning(Grant No.NRF-2015K1A3A7A03074226)。
  • 相关文献

同被引文献15

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部