期刊文献+

基于自适应VMD的高速列车轴箱轴承故障诊断 被引量:8

Fault diagnosis of axle box bearing of high-speed train based on adaptive VMD
下载PDF
导出
摘要 以尺度空间对信号频谱中共振频段的识别能力为基础,结合变分模态分解(VMD)对信号的自适应分解能力,提出了预估惩罚因子的尺度空间引导VMD算法。该算法的核心包括以尺度空间对信号频段的共振频段划分从而确定VMD中的本征固有模态个数,并根据共振频段边界预估VMD各个本征固有函数的初始中心频率与相应的惩罚因子取值,从而提高VMD的自适应性以及准确性。仿真结果表明,该方法能够正确识别低信噪比条件下的故障信号的共振频带,并对信号进行准确的分解。应用高速列车轴箱轴承实验数据对该方法进行实验验证,能够有效分解信号中包含的不同故障冲击;与选择不同惩罚因子的VMD算法相比,能够更准确地提取出信号中的不同故障冲击,对VMD分解的自适应性与准确性有着显著提高。 Based on the recognition ability of scale space for resonance frequency band in signal spectrum,combined with the adaptive decomposition ability of variational mode decomposition(VMD),a scale space guided VMD algorithm was proposed to predict penalty factor.The core of the algorithm included dividing resonance frequency bands of signal frequency band in scale space to determine the number of intrinsic modes in VMD,estimate the initial center frequency and corresponding penalty factor of each intrinsic function of VMD according to the boundary of resonance frequency band,and improve the adaptability and accuracy of VMD.The simulation results showed that the proposed method can recognize resonance frequency bands of a faulty signal under low SNR condition and guide VMD to correctly decompose the signal;the test data of axle box bearing of high-speed train are used to verify the proposed method being able to effectively decompose different fault shocks in signal;compared to the VMD algorithm with different penalty factors,the proposed method can more accurately extract different fault shocks,and significantly improve the adaptability and accuracy of VMD.
作者 黄衍 林建辉 刘泽潮 黄晨光 HUANG Yan;LIN Jianhui;LIU Zechao;HUANG Chenguang(State Key Lab of Traction Power,Southwest Jiaotong University,Chengdu 610000,China)
出处 《振动与冲击》 EI CSCD 北大核心 2021年第3期240-245,共6页 Journal of Vibration and Shock
基金 国家科技部计划项目(2017YFB1201004-25)。
关键词 轴箱轴承 故障诊断 尺度空间 变分模态分解 axle box bearing fault diagnosis scale space variational mode decomposition(VMD)
  • 相关文献

参考文献6

二级参考文献42

  • 1刘慧婷,张旻,程家兴.基于多项式拟合算法的EMD端点问题的处理[J].计算机工程与应用,2004,40(16):84-86. 被引量:120
  • 2章立军,杨德斌,徐金梧,陈志新.基于数学形态滤波的齿轮故障特征提取方法[J].机械工程学报,2007,43(2):71-75. 被引量:74
  • 3段礼祥.基于小波包理论的往复泵故障特征提取研究[J].石油矿场机械,2007,36(1):1-4. 被引量:8
  • 4HUANG N E, SHEN Z, LONG S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society of London, 1998, 454(1): 903-995. 被引量:1
  • 5HUANG N E, SHEN Z, LONG S R. A new view of nonlinear water waves: The Hilbert spectrum [J]. Annual Review of Fluid Mechanics, 1999, 31: 417-457. 被引量:1
  • 6LIU B, RIEMENSCHNEIDER S, XU Y. Gearbox fault diagnosis using empirical mode decomposition and Hilbert spectrmn [J]. Mechanical Systems and Signal Processing, 2006, 20. 718-734. 被引量:1
  • 7RAI V K, MOHANTY A R. Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform [J]. Mechanical Systems and Signal Processing, 2007, 21: 2607-2615. 被引量:1
  • 8BABU T R, SRIKANTH S, SEKHAR A S. Hilbert-Huang transform for detection and monitoring of crack in a transient rotor [J]. Mechanical Systems and Signal Processing, 2008, 22: 905-914. 被引量:1
  • 9LI Y J, TSE P W, YANG X, et al. EMD-based fault diagnosis for abnormal clearance between contacting components in a diesel engine [J]. Mechanical Systems and Signal Processing, 2010, 24: 193-210. 被引量:1
  • 10WU Z H, HUANG N E. Ensemble empirical mode decomposition: A noise assisted data analysis method [J]. Advances in Adaptive Data Analysis, 2009, 1 : 1-41. 被引量:1

共引文献251

同被引文献68

引证文献8

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部