期刊文献+

循环谱与随机森林融合改进频谱检测算法

Spectrum Detection Algorithm Improved by Cyclic Spectrum and Random Forest
下载PDF
导出
摘要 针对低信噪比下无线认知网络的主用户频谱检测问题,提出了一种基于循环谱和随机森林的检测方法。该方法首先将信号变换到循环谱域,计算信号非零循环频率最大时的信号循环谱,并以循环谱的均值和方差构成特征向量。然后,基于随机森林构建无线认知网络主用户信号频谱检测模型,并分别构建正负样本信号进行模型训练。最后利用训练完成的模型检测无线认知网络主用户信号。仿真实验结果表明,该方法能够有效实现主用户信号频谱检测,且检测性能优于目前常用算法。 Aiming at the problem of spectrum detection of primary users in wireless cognitive networks with low SNR,a detection method based on cyclic spectrum and random forest is proposed.The method first transforms the signal into the cyclic spectrum domain,calculates the signal cycle spectrum when the non-zero cycle frequency of the signal is maximum,and forms the feature vector by the mean and variance of the cyclic spectrum.Then,based on the random forest,the main user signal spectrum detection model of wireless cognitive network is constructed,and the positive and negative sample signals are constructed separately for model training.Finally,the training completed model is used to detect the main user signal of the wireless cognitive network.The simulation results show that the proposed method can effectively realize the spectrum detection of the main user signal,and the detection performance is better than the commonly used algorithms.
作者 杨波 YANG Bo(Sichuan University of Arts and Science,Sichuan Dazhou 635000,China)
机构地区 四川文理学院
出处 《机械设计与制造》 北大核心 2021年第2期282-285,共4页 Machinery Design & Manufacture
基金 2018年国家级实验教学示范中心课题(SFZX2018B15)。
关键词 无线认知网络 频谱检测 循环谱 随机森林 Wireless Cognitive Network Spectrum Detection Cyclic Spectrum Random Forest
  • 相关文献

参考文献8

二级参考文献30

  • 1沈志云.高速列车的动态环境及其技术的根本特点[J].铁道学报,2006,28(4):1-5. 被引量:84
  • 2Federal Communications Commission. Spectrum Policy Task Force Report[ R]. ET Docket, 2002: 2-135. 被引量:1
  • 3Zhang L, Huang J, Tang C. Novel Energy Detection Scheme in Cognitive Radio[C]//IEEE International Conference on Signal Processing, Communications and Computing (IC- SPCC), 2011 : 1-4. 被引量:1
  • 4Smitha K G, Vinod A P. A Multi-Resolution Fast Filter Bank for Spectrum Sensing in Military Radio Receivers [ J ]. Very Large Scale Integration ( VLSI ) Systems, IEEE Transactions on, 2012, 20(7): 1323-1327. 被引量:1
  • 5Yucek T, Arslan H. A Survey of Spectrum Sensing Al- gorithms for Cognitive Radio Applications [ J ]. Com- munications Surveys & Tutorials, IEEE, 2009, 11 (1) : 116-130. 被引量:1
  • 6Yu-Jie T, Qin-yu Z, Wei L. Artificial Neural Network Based Spectrum Sensing Method for Cognitive Radio [ C]///Wireless Communications Networking and Mobile Computin (WiCOM' 9NtN. 1_4. 被引量:1
  • 7Kaswan K S, Choudhary S, Sharma K. Applications of Ar- tificial Bee Colony Optimization technique : Survey [ C ] // Computing for Sustainable Global Development (INDIA- Corn), 2015 : 1660-1664. 被引量:1
  • 8Celal Ozturk, Dervis Karaboga. Hybrid Artificial Bee Colony Algorithm for Neural Network Training[ C ] //2011 IEEE Congress on Evolutionary Computation (CEC), 2011 : 84- 88. 被引量:1
  • 9Ghozzi M, Marx F, Dohler M, et al. Cyelostatilonarihy- Based Test for Detection of Vacant Frequency Bands[ C ]// IEEE International Conference on Congress on Mykonos Island, Cognitive Radio Oriented Wireless Networks and Communications, 2006 : 1-5. 被引量:1
  • 10潘建国,翟旭平.基于能量检测的频谱感知方法[J].上海大学学报(自然科学版),2009,15(1):54-59. 被引量:24

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部