期刊文献+

基于粒子群优化的CYCBD在滚动轴承故障特征提取的应用研究 被引量:5

Study on Application of CYCBD based on PSO in Fault Feature Extraction of Rolling Bearing
下载PDF
导出
摘要 针对在背景噪声下滚动轴承故障初期周期性瞬态冲击不明显的问题,应用基于循环平稳最大化盲解卷积方法(Blind deconvolution based on cyclostationarity maximization,CYCBD)。滤波器长度和循环频率左右CYCBD降噪效果,应用粒子群优化算法(Particle swarm optimization,PSO)对其进行智能化寻优,确定优化参数,解决CYCBD不稳定问题。首先,采用PSO优化CYCBD中滤波器长度和循环周期频率,对周期性冲击成分进行增强;然后,通过包络谱峰值因子(Crest factor of envelope spectrum,EC)作为PSO的目标函数,迭代寻找滤波器长度和循环周期频率的最优解;最后,对CYCBD应用最优解,对增强后的信号进行包络解调分析,可以准确地获得轴承信号的故障特征频率。通过对仿真信号和实验数据分析,表明该方法可有效增强振动信号的周期性瞬态冲击特征,在滚动轴承早期故障特征提取方面具有优势。 The blind deconvolution based on cyclostationarity maximization(CYCBD)is applied to solve the problem that the periodic transient impacts is not obvious at the initial stage of rolling bearing failure under background noise.The noise reduction effect of CYCBD around the filter length and cycle frequency,particle swarm optimization algorithm(PSO)is applied to intelligently optimize CYCBD.Determine the optimal parameters to solve the instability of CYCBD.Firstly,PSO is used to optimize the filter length and cycle frequency in CYCBD to enhance the periodic impacts component.Then,the optimal solution of filter length and cycle frequency is iteratively found by using crest factor of envelope spectrum(EC)as the objective function of PSO.Fi--nally,by applying the optimal solution to CYCBD and conducting envelope demodulation analysis on the enhanced signals,the fault characteristic frequency of bearing signals can be accurately obtained.Through the analysis of simulation signals and experimental data,it is shown that the method can effectively enhance the periodic transient impacts characteristics of vibration signals and has advantages in the early fault feature extraction of rolling bearings.
作者 刘宇涛 孙虎儿 Liu Yutao;Sun Huer(School of Mechanical Engineering,North University of China,Taiyuan 030051,China)
出处 《机械传动》 北大核心 2021年第2期171-176,共6页 Journal of Mechanical Transmission
基金 山西省自然科学基金(201801D121186)。
关键词 滚动轴承 循环平稳最大化的盲反褶积 粒子群优化算法 滤波器长度 循环频率 Rolling bearing Blind deconvolution based on cyclostationarity maximization Particle swarm optimization algorithm Filter length Cycle frequency
  • 相关文献

参考文献4

二级参考文献35

  • 1梅宏斌,吴雅,杨叔子,崔乐芳,吴克勤.用包络分析法诊断滚动轴承故障[J].轴承,1993(8):38-40. 被引量:11
  • 2胡桥,何正嘉,訾艳阳,张周锁.基于模糊支持矢量数据描述的早期故障智能监测诊断[J].机械工程学报,2005,41(12):145-150. 被引量:13
  • 3梁霖,徐光华.基于自适应复平移Morlet小波的轴承包络解调分析方法[J].机械工程学报,2006,42(10):151-155. 被引量:20
  • 4MCFADDEN P, SMITH D. Model for the vibration produced by a single point defect in a rolling element bearing[J]. Journal of Sound and Vibration, 1984, 98(2): 263-273. 被引量:1
  • 5MCFADDEN P, SMITH J. Vibration monitoring of rolling element bearings by the high-frequency resonance technique--a review[J]. Tribology International, 1984, 17(1): 3-10. 被引量:1
  • 6QIU Hal, LEE J, LIN Jing, et al. Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics[J]. Journal of Sound and Vibration, 2006, 289(1): 1066-1090. 被引量:1
  • 7RUBINI R, MENEGHETTI U. Application of the envelope and wavelet transform analyses for the diagnosis of incipient faults in ball bearings[J]. Mechanical Systems and SignalProcessing, 2001, 15(2): 287-302. 被引量:1
  • 8YIAKOPOULOS C, ANTONIADIS I. Wavelet based demodulation of vibration signals generated by defects in rolling element bearings[J]. Shock and Vibration, 2002, 9(6): 293-306. 被引量:1
  • 9LIN Jing, ZUO Mingjian. Gearbox fault diagnosis using adaptive wavelet filter[J]. Mechanical Systems and Signal Processing, 2003, 20(8): 2022-2045. 被引量:1
  • 10YAN Ruqiang, GAO R. Energy-based feature extraction for defect diagnosis in rotary machines[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58(9): 3130-3139. 被引量:1

共引文献98

同被引文献53

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部