1Sumic S, Kuromatsu R, Okuda K, et al. Microvascular invasion in pa- tients with hepatocellular carcinoma and its predictable clinicopatho- logical factors[ J ]. Ann SurgOnco1,2008,15 : 1375-1382. 被引量:1
2Vitale A, Cucchctti A, QiaoGL,et al. Is resectable hepatocel|ular car- cinoma a ~'ontraimtication to liver transplantation? A novel decision model based on " nomber of patients needed to transplant" as meas- ure of transplant benefit [ J ]. J Hepato1,2014,60 : 1165-1171. 被引量:1
3Kim KA, Kim M J, JeonHM, et al. Prediction of microvascular inva- sion of hepatocellular carcinoma: usefulness of peritumoralhypoin- tensity seen on gadoxetate disodium-enhmaced hepatobiliary phase images[ J ]. J MagnReson Imaging,2012,35:629-634. 被引量:1
4Wu D,Tan M.Zlu~u M,et al. I,iver computed tomographic perfusion in the asst~ssmcnt of microvascular invasion in tmtients with small hepatoccllular carcinoma[ J]. Invest Radio1,2015,50 : 188-194. 被引量:1
5Suh Y J, Kim M J, Choi JY, c! al. Preoperative prediction of the micro- vascular invasion of hepatocellular carcinoma with diffusion-weighted imaging[ J ]. Liver Transp1,2012,18 : 1171-1178. 被引量:1
6Sugahara T, Knrngi Y, Kuehi M, et al. Usefulness of diffusion- weighted MRI with echo-planar technique in the evaluation of cellu- larity in gliumas[ J ]. J MagnReson Imaging 1999,9:53.-60. 被引量:1
7Zacharaki El, Wang S, Chawla S, et al. Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme[ J]. MagnReson Med,2009,62 : 1609-1618. 被引量:1
8Alic L,van Vliet M,van Dijke CF,et al. Heterogeneity in DCE-MRI parametric: maps: a biomarker for treatment respmse? [ J ]. Phys Med Biol,2011,56 : 1601 = 1616. 被引量:1
9Taouli B, Koh DM. Diffusion-weighted MR imaging of the liver[ J ]. Radiology, 201 O, 254 : 47 -66. 被引量:1
10Xu P,Zeng M,Liu K, et al. Microvascular invasion in small hepato- cellular carcinoma: is it predictable with preoperative diffusion- weighted imaging? [ J ]. J GastroenterolHepatol,2014 ,29 :330-336. 被引量:1