摘要
以Mg O或Al2O3与鳞片石墨复合制备的含碳耐火材料具有优异的抗热震性、抗侵蚀性能,被广泛应用于浸入式水口、长水口、塞棒、滑板,以及具有控流和钢水净化作用的功能耐火材料部件和炼钢转炉、电炉、钢包内衬、冶金窑炉内衬等。同时,随着钢铁冶金等行业趋向于高效化和智能化,对含碳耐火材料的抗渣侵蚀性能和抗热震性能提出了更高的要求。而含碳耐火材料的损毁往往是从其中的石墨被氧化开始,碳的易氧化不仅消耗鳞片石墨资源释放温室气体,而且使含碳耐火材料的性能下降、使用寿命缩短。因此,含碳耐火材料防氧化技术的发展对钢铁冶金行业提质增效、资源环境保护具有重要的现实意义。然而,含碳耐火材料的原料组成复杂,使用过程中性能相互制约,在提高抗氧化性能的同时,导致含碳耐火材料的其他性能下降。因此,研究者们除了通过调整不同抗氧化剂的含量和粒径优化抗氧化性能外,主要从抗氧化剂的复合化和含碳耐火材料微观结构演变方面不断尝试,在提高含碳耐火材料抗氧化性能的同时,协同提高其抗渣侵蚀性能和力学性能。根据含碳耐火材料的氧化损毁机理,添加抗氧化剂法依旧是含碳耐火材料最常用的防氧化技术。金属抗氧化剂除了生成金属氧化物和碳化物阻止含碳耐火材料的氧化外,通过固相反应生成的陶瓷相产物还可以提高含碳耐火材料的力学性能和抗渣侵蚀性能,过渡金属和金属合金作为抗氧化剂还可以催化热解碳石墨化以及促进碳化物晶须的生成。碳化物抗氧化剂除了常见的碳化硅和碳化硼外,MAX相和Al与碳化物结合制备的复杂化合物不仅具有优异的抗氧化性能,还可以有效避免由金属碳化物水化导致的含碳耐火材料的开裂问题。含硼氧化物作为抗氧化剂不但可以生成致密的氧化层减缓氧气的渗透,而且容易通过离
Carbon-containing refractories prepared by compounding Mg O or Al2 O3 with flake graphite have excellent thermal shock resistance and slag corrosion resistance.It is widely used in submersed nozzle,long nozzle,monolithic Stopper,slide gates and other functional refractories product for flow controlling and steel cleaning,as well as basic oxygen furnaces,electric furnaces,steel ladles and smelting industrial furnace lining.At the same time,as steel metallurgical tend to be more efficient and intelligent,higher requirements are placed on the slag corrosion resistance and thermal shock resistance of carbon-containing refractories.The damage of carbon-containing refractories often starts from the oxidation of graphite.The easily oxidized carbon not only expend flake graphite resources to release greenhouse gases,but also decrease the properties of carbon-containing refractories and curtail the service life.Therefore,the development of oxidation resistance technology of carbon-containing refractories has important significance for improving the quality and efficiency of metallurgy industry and environmental protection.However,the composition of the raw materials of the carbon-containing refractories is complicated,and the performances are mutually restricted during use.While improving theoxidation resistance,other properties of the carbon-containing refractories are reduced.Therefore,in addition to the optimization of the oxidation resistance by adjusting the content and grain size of different antioxidants,researchers have mainly explored the antioxidant composite and the microstructure evolution of carbon-containing refractories,improve slag corrosion resistance and mechanical properties.According to the oxidative damage mechanism of carbon-containing refractories,the addition of antioxidant is still the most commonly used oxidation resistant technology for carbon-containing refractories.In addition to the formation of metal oxides and carbides to prevent the oxidation of carbon-containing refractory materials,metal
作者
代黎明
肖国庆
丁冬海
DAI Liming;XIAO Guoqing;DING Donghai(College of Materials Science and Engineering,Xi’an University of Architecture and Technology,Xi’an 710055,China;Postdoctoral Mobile Research Station of Materials Science and Engineering,Xi’an University of Architecture and Technology,Xi’an 710055,China;State Key Laboratory of Advanced Refractories,Sinosteel Luoyang Institute of Refractories Research Co.,Ltd,.Luoyang 471039,China)
出处
《材料导报》
EI
CAS
CSCD
北大核心
2021年第3期3057-3066,共10页
Materials Reports
基金
国家自然科学基金(51572212,51772236)
陕西省教育厅重点实验室科研计划项目(15JS053)。