期刊文献+

基于YOLO的前方车辆检测 被引量:8

Front Vehicle Detection Based on YOLO
下载PDF
导出
摘要 前方车辆识别是实现自动驾驶环境感知中的最重要的课题之一,目标检测需要高的检测精度和定位精度以及实时性和鲁棒性。目标检测的传统算法中,典型代表有Haar特征+Adaboost算法,Hog特征+Svm算法,Dpm算法。深度学习的目标检测典型代表有RCNN系列,YOLO系列,SSD,YOLO是目前最快的目标检测的卷积神经网络算法。通过YOLO算法对公开数据集中车辆目标进行测试,对不同环境中的采集图像进行测试,实验结果表明YOLO算法能够满足车辆检测的实时性和精度的要求,说明该方法可行。 In front of the vehicle identification is to realize the automatic driving one of the most important subject in environ⁃mental awareness,target detection need high detection accuracy and positioning accuracy and real-time performance and robust⁃ness of target detection in the traditional algorithm.The typical representatives are Haar feature+Adaboost algorithm,Hog feature+Svm algorithm and Dpm algorithm.Typical representatives of deep learning target detection are RCNN series,series of YOLO,SSD.YOLO is currently the fastest convolution neural network algorithm of target detection.Through YOLO algorithm,vehicle targets in the open data set are tested,and images collected in different environments are tested.The experimental results show that the YOLO algorithm can meet the requirements of real-time and accuracy of vehicle detection,indicating that the method is feasible.
作者 何旭光 罗一平 江磊 HE Xuguang;LUO Yiping;JIANG Lei(School of Mechanical and Automotive Engineering,Shanghai University of Engineering and Technology,Shanghai 201620)
出处 《舰船电子工程》 2021年第1期137-139,共3页 Ship Electronic Engineering
关键词 车辆识别 卷积神经网络 YOLO vehicle identification convolutional neural network YOLO
  • 相关文献

参考文献8

二级参考文献31

  • 1Smith D. Low cost tyre monitoring system using electronic article surveillance techniques [J]. Tyre Monitoring IEEE Colloquium on Tyre Monitoring, 1997(3) :1-4. 被引量:1
  • 249CFR PART571. 138-2002,Tire pressure monitoring systems,controls and displays[S]. 被引量:1
  • 3Pohl A,Seifert F. New applications of wirelessly interrogable passive SAW[J].IEEE Transactions on Microwave Theory and Techniques,1998,46(12):2 208-2 212. 被引量:1
  • 4Schimetta G, Dollinger F, Weigel R. A wireless pressure measurement system using a SAW hybrid sensor[A]. Microwave Symposium Digest, 2000 IEEE MTT-S International(Vol. 3)[C]. Boston,USA. 2000.1 407-1 410. 被引量:1
  • 5Pohl A,Seifert F. Wirelessly interrogable SAW-sensors for vehicular applications[A]. Instrumentation and Measurement Technology Conference, 1996, IEEE Conference Proceedings(Vol. 2)[C]. Brussels,Belgium. 1996.1 465-1 468. 被引量:1
  • 6Pohl A, Springer A, Reindl L, et al. New applications of wirelessly interrogable passive SAW[A]. Microwave Symposium Digest, 1998, IEEE MTT-S International (Vol. 2)[C]. Baltimore,USA. 1999. 503-506. 被引量:1
  • 7Pohl A, Ostermayer G, Reindl L, et al. Monitoring the tire pressure at cars using passive SAW sensors[A]. Ultrasonics Symposium, Proceedings of 1997 IEEE(Vol. 1) [C]. Toronto,Canada. 1997. 471-474. 被引量:1
  • 8Pohl A, Steindl R, Reindl L. The "intelligent tire" utilizing passive SAW sensors measurement of tire friction[J]. IEEE Transactions on Instrumentation and Measurement, 1999,48(6):1 041-1 046. 被引量:1
  • 9Grossmann R. Quartz crystals as remote sensors for tire pressure[A]. Instrumentation and Measurement Technology Conference, 1999, Proceedings of the 16th IEEE(Vol. 3)[C]. Venice,Italy. 1999,1 745-1 749. 被引量:1
  • 10殷光,陶亮.一种SVM验证码识别算法[J].计算机工程与应用,2011,47(18):188-190. 被引量:18

共引文献1840

同被引文献91

引证文献8

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部