期刊文献+

Forecasting soil temperature at multiple-depth with a hybrid artificial neural network model coupledhybrid firefly optimizer algorithm 被引量:6

原文传递
导出
摘要 Forecasting soil temperature at multiple depths is considered to be a core decision-making task for examining future changes in surface and sub-surface meteorological processes,land-atmosphere energy exchange,resilient agricultural systems for improved crop health and eco-environmental risk assessment.The aim of this paper is to estimate monthly soil temperature(ST)at multiple depth:5,10,20,50 and 100 cm with a hybrid multi-layer perceptron algorithm integrated with the firefly optimizer algorithm(MLP-FFA).To develop the hybrid MLP-FFA model,the monthly ST and relevant meteorological variables for the city of Adana(Turkey)are collated for the period of 2000–2007.Construction of hybrid MLP-FFA model is drawn upon a limited set of predictors,denoted as soil depth,periodicity(or the respective month),air temperature,pressure and solar radiation,while the objective variable for MLP-FFA model is the forecasted ST at multiple depths.To the evaluate MLPFFA,statistical metrics applied to test the model’s performance are:the root mean square error(RMSE),mean absolute error(MAE),mean absolute percentage error(MAPE)and mean bias error(MBE)where the sign of the difference is also considered.In conjunction with statistical metrics,a Taylor diagram is utilized to visualize the degree of similarity between the observed and forecasted soil moisture.In terms of the forecasted results,the hybrid MLPFFA model is seen to outperform the standalone MLP model.The optimal MLP-FFA is attained for soil temperature forecasting at a depth of 20 cm(RMSE,MAPE of 0.546C,2.40%)whereas the optimal MLP is attained for soil temperature forecasting at a depth of 50 cm(RMSE of 0.544℃,2.21%).Conclusively,the study advocates through statistical metrics attained the better utility of the hybrid MLP-FFA hybrid model.Given its superior performance,it is ascertained that the hybrid MLP model integrated with Firefly optimizer is a qualified ancillary tool that can be applied to generate precise soil temperature forecasts at multiple soil depths.
出处 《Information Processing in Agriculture》 EI 2018年第4期465-476,共12页 农业信息处理(英文)
  • 相关文献

参考文献4

二级参考文献64

  • 1郑小霞,钱锋.高斯核支持向量机分类和模型参数选择研究[J].计算机工程与应用,2006,42(1):77-79. 被引量:39
  • 2Arshad, M. A. and Azooz, R. H. 1996. Tillage effects on soil thermal properties in a semiarid cold region. Soil Sci. Soc. Am. J. 60:561-567. 被引量:1
  • 3Bachmann, J., Horton, R., Ren, T. and van der Ploeg, R. R. 2001. Comparison of thermal properties of four wettable and four water-repellent soils. Soil Sci. Soc. Am. J. 65:1675-1679. 被引量:1
  • 4Ball, D. F. 1964. Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soil. J. Soil Sci. 15: 84-92. 被引量:1
  • 5Carslaw, H. S. and Jaeger, J. C. 1959. Conduction of Heat in Solids. Clarendon Press, Oxford. 510pp. 被引量:1
  • 6Chatfield, C. 1996. The Analysis of Time Series. Chapman and Hall, New York. 被引量:1
  • 7Davies, B. E. 1974. Loss-on-ignition as an estimate of soil organic matter. Soil Sci. Soc. Am. Proc. 38: 150-151. 被引量:1
  • 8de Vries, D. A. 1963. Thermal properties of soils. In van Wijk, W. R. (ed.) Physics of Plant Environment. North-Holland Publishing Co., Amsterdam. pp. 210-235. 被引量:1
  • 9de Vries, D. A. 1975. Heat Transfer in Soils. In de Vries, D. A. and Afgan, N. H. (eds.) Heat and Mass Transfer in the Biosphere. Scripta Book Co., Washington, DC. pp. 5 -28. 被引量:1
  • 10Ekwue, E. I., Stone, R. J., Maharaj, V. V. and Bhagwat, D. 2005. Thermal conductivity and diffusivity of four trinidadian soils as affected by peat content. Trans. of ASAE. 48:1803-1815. 被引量:1

共引文献17

同被引文献33

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部