期刊文献+

Modeling the Spatial Distribution of Soil Heavy Metals Using Random Forest Model—A Case Study of Nairobi and Thirirka Rivers’ Confluence 被引量:1

Modeling the Spatial Distribution of Soil Heavy Metals Using Random Forest Model—A Case Study of Nairobi and Thirirka Rivers’ Confluence
下载PDF
导出
摘要 Modeling the spatial distribution of soil heavy metals is important in determining the safety of contaminated soils for agricultural use. This study utilized 60 topsoil samples (0 - 30 cm), multispectral images (Sentinel-2), spectral indices, and ancillary data to model the spatial distribution of heavy metals in the soils along the Nairobi River. The model was generated using the Random Forest package in R. Using R2 to assess the prediction accuracy, the Random Forest model generated satisfactory results for all the elements. It also ranked the variables in order of their importance in the overall prediction. Spectral indices were the most important variables within the rankings. From the predicted topsoil maps, there were high concentrations of Cadmium on the easterly end of the river. Cadmium is an impurity in detergents, and this section is in close proximity to the Nairobi water sewerage plant, which could be a direct source of Cadmium. Some farms had Zinc levels which were above the World Health Organization recommended limit. The Random Forest model performed satisfactorily. However, the predictions can be improved further if the spatial resolutions of the various variables are increased and through the addition of more predictor variables. Modeling the spatial distribution of soil heavy metals is important in determining the safety of contaminated soils for agricultural use. This study utilized 60 topsoil samples (0 - 30 cm), multispectral images (Sentinel-2), spectral indices, and ancillary data to model the spatial distribution of heavy metals in the soils along the Nairobi River. The model was generated using the Random Forest package in R. Using R2 to assess the prediction accuracy, the Random Forest model generated satisfactory results for all the elements. It also ranked the variables in order of their importance in the overall prediction. Spectral indices were the most important variables within the rankings. From the predicted topsoil maps, there were high concentrations of Cadmium on the easterly end of the river. Cadmium is an impurity in detergents, and this section is in close proximity to the Nairobi water sewerage plant, which could be a direct source of Cadmium. Some farms had Zinc levels which were above the World Health Organization recommended limit. The Random Forest model performed satisfactorily. However, the predictions can be improved further if the spatial resolutions of the various variables are increased and through the addition of more predictor variables.
作者 Evans Omondi Mark Boitt Evans Omondi;Mark Boitt(Department of Geomatic Engineering and Geospatial Information Systems, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya)
出处 《Journal of Geographic Information System》 2020年第6期597-619,共23页 地理信息系统(英文)
关键词 Random Forest Sentinel 2 Heavy Metals Spectral Indices Spatial Modeling Random Forest Sentinel 2 Heavy Metals Spectral Indices Spatial Modeling
  • 相关文献

同被引文献15

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部