摘要
In this work, the biodegradable and histocompatibility properties of pure Mg and ZK60 alloy wereinvestigated as new temporary implants for urinary applications. The corrosion mechanism in artificialurine was proposed using electrochemical impedance spectroscopy and potentiodynamic polarizationtests. The corrosion potential of pure magnesium and ZK60 alloy were -1820 and -1561 mV, respectively,and the corrosion current densities were 59.66 ± 6.41 and 41.94 ± 0.53 μA cm^-2, respectively. Thein vitro degradation rates for pure Mg and ZK60 alloy in artificial urine were 0.382 and 1.023 mm/y,respectively, determined from immersion tests. The ZK60 alloy degraded faster than the pure Mg in bothartificial urine and in rat bladders (the implants of both samples are ø 3 mm × 5 mm). Histocompatibilityevaluations showed good histocompatibility for the pure Mg and ZK60 alloy during the 3 weeks postimplantationin rat bladders, and no harm was observed in the bladder, liver and kidney tissues. Theresults provide key information on the degradation properties and corrosion mechanism of pure Mg andZK60 alloy in the urinary system.
基金
This work is supported by the National Natural Science Foundation of China(NSFC,No.51431002&No.51601222)
China Postdoctoral Science Foundation funded project(2016M591040)
the Air Force General Hospital Grant(kz2015054).