摘要
传统的Relief-F算法主要用于处理有标记数据集。针对部分标记数据集,引入一种基于耦合学习的数据样本相似度,设计了一种面向符号数据的基于Relief-F算法的半监督特征选择算法。为有效验证新算法的可行性,实验分析中选取了5组UCI数据集和3种常用机器学习分类器来进行验证,实验结果进一步验证了算法的有效性。
The classical Relief-F was only suitable for labeled data.For partially labeled data,a semi-supervised feature selection algorithm based on Relief-F was proposed.In the experiments,5 UCI data sets and 3 common classifiers were employed to illustrate the effectiveness of the new algorithm.The experimental results showed that the new proposed algorithm was feasible.
作者
刘吉超
王锋
LIU Jichao;WANG Feng(School of Computer and Information Technology, Shanxi University, Taiyuan 030006, China)
出处
《郑州大学学报(理学版)》
CAS
北大核心
2021年第1期42-46,53,共6页
Journal of Zhengzhou University:Natural Science Edition
基金
山西省应用基础研究项目(201801D221170)。