摘要
航班恢复问题在航空日常运营中占有重要地位,高质量的航班恢复是提供运输服务的重要保障.建立了不考虑旅客旅程信息的多机型航班恢复的非线性整数规划模型,引入了累积0-1变量用以描述了飞机的时间资源占用,提出了飞机到发机场状态以描述飞机的空间位置.考虑到问题复杂度和求解时间的要求,本文在对所构建模型特点进行分析之后,设计了基于惩罚费用的启发式算法进行求解.通过算例验证,所设计启发式算法能够在较短时间内得出满意解.
Flight recovery is critical for air transportation,which ensures the quality of daily operations of air transportation.This paper built a nonlinear integer programming model to study the multi-aircraft flight recovery problem,while the problem doesn’t contain the passengers’trips’information.The paper uses cumulative 0-1 variables to describe the occupation of temporal resources;furthermore the model describes the spatial status of aircrafts by using the airport status of aircrafts.Considering the complexity of the problem and the requirement of solving the problem,this paper designed a heuristic algorithm to solve the model after analyzing the model,which based on penalty costs.The numerical experiments demonstrate that the heuristic algorithm can get satisfactory solution in a short time.
作者
周文君
'李功
杨国举
ZHOU Wen-jun;LI Gong;YANG Guoju(School of Transportation,LanzhouJiaotong University,Lanzhou 730070,China;Railway Line&Station Design&Research Department,China Railway Siyuan Survey and Design Group,Wuhan 430063,China;Railway Line Sc Station Design&Research Department,China Railway Shanghai Design Institute Group,Shanghai 200070,China;School of Economics and Management,Wuhan Railway Vocational College of Technical,Wuhan 430205,China)
出处
《数学的实践与认识》
北大核心
2020年第24期20-31,共12页
Mathematics in Practice and Theory
关键词
航空运输
航班恢复
飞机到发机场状态
累计0-1变量
启发式算法
air transportation
flight recovery
airport status of aircrafts
cumulative 0-1 variables
heuristic algorithm