摘要
考虑一类具有非线性增长条件的分数阶微分包含的非局部问题,先利用Leray-Schauder不动点定理验证分数阶非线性微分方程解的存在性与唯一性,再利用集值不动点理论证明一类分数阶微分包含问题解的存在性.
We considered a nonlocal problems of a class of fractional differential inclusions with nonlinear growth conditions.Applying to the Leray-Schauder fixed point theorem,we first verified the existence and uniqueness of solutions for fractional nonlinear differential equations,and then proved the existence of solutions for a class of fractional differential inclusions by using set-valued fixed point theorem.
作者
吴睿
高珊珊
程毅
WU Rui;GAO Shanshan;CHENG Yi(Department of Mathematics,Changchun University of Finance and Economics,Changchun 130122,China;Department of Information Engineering,Liaoning Institute of Science and Engineering,Jinzhou 121000,Liaoning Province,China;College of Mathematical Sciences,Bohai University,Jinzhou 121000,Liaoning Province,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2021年第1期55-59,共5页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:11401042)
吉林省自然科学基金(批准号:192475JC)
吉林省教育厅“十三五”科学技术规划项目(批准号:JJKH20190412KJ).
关键词
分数阶微积分
微分包含
非局部问题
不动点定理
fractional calculus
differential inclusion
nonlocal problem
fixed point theorem