期刊文献+

一类Caputo型分数阶微分包含的非局部问题 被引量:2

Nonlocal Problems of a Class of Caputo-TypeFractional Differential Inclusions
下载PDF
导出
摘要 考虑一类具有非线性增长条件的分数阶微分包含的非局部问题,先利用Leray-Schauder不动点定理验证分数阶非线性微分方程解的存在性与唯一性,再利用集值不动点理论证明一类分数阶微分包含问题解的存在性. We considered a nonlocal problems of a class of fractional differential inclusions with nonlinear growth conditions.Applying to the Leray-Schauder fixed point theorem,we first verified the existence and uniqueness of solutions for fractional nonlinear differential equations,and then proved the existence of solutions for a class of fractional differential inclusions by using set-valued fixed point theorem.
作者 吴睿 高珊珊 程毅 WU Rui;GAO Shanshan;CHENG Yi(Department of Mathematics,Changchun University of Finance and Economics,Changchun 130122,China;Department of Information Engineering,Liaoning Institute of Science and Engineering,Jinzhou 121000,Liaoning Province,China;College of Mathematical Sciences,Bohai University,Jinzhou 121000,Liaoning Province,China)
出处 《吉林大学学报(理学版)》 CAS 北大核心 2021年第1期55-59,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11401042) 吉林省自然科学基金(批准号:192475JC) 吉林省教育厅“十三五”科学技术规划项目(批准号:JJKH20190412KJ).
关键词 分数阶微积分 微分包含 非局部问题 不动点定理 fractional calculus differential inclusion nonlocal problem fixed point theorem
  • 相关文献

参考文献2

二级参考文献20

  • 1Okochi H. On the Existence of Anti-periodic Solutions to a Nonlinear Evolution Equation Associated with Odd SuhdifferentialOperators [J]. J Funct Anal, 1990, 91(2): 246- 258. 被引量:1
  • 2LIU Qing. Existence of Anti periodic Mild Solutions for Semilinear Evolution Equations [J]. J Math Anal Appl, 2011, 377(1): 110-120. 被引量:1
  • 3WANG Yan. Antiperiodic Solutions for Dissipative Evolution Equations [J]. Math Comput Modelling, 2010, 51(5/6): 715-721. 被引量:1
  • 4CHEN Yu qing, WANG Xiang-dong, XU Hai-xiang. Anti-periodic Solutions for Semilinear Evolution Equations [J]. J Math Anal Appl, 2002, 273(2): 627- 636. 被引量:1
  • 5CHEN Yu-qing, Juan J, O'Regan N D. Anti periodic Solutions for Evolution Equations Associated with Maximal Monotone Mappings [J]. Applied Mathematics Letters, 2011, 24(3) : 302 -307. 被引量:1
  • 6Zeidler E. Nonlinear Functional Analysis and Its Applications [M]. Berlin: Springer-Verlag, 1984. 被引量:1
  • 7Zeidler E. Nonlinear Functional Analysis and Its Applications II [M]. New York: Springer-Verlag, 1990. 被引量:1
  • 8Aubinj P, Cellina A. Differential Inclusion [M]. Berlin:Springer-Verlag, 1984. 被引量:1
  • 9Papageorgiou N S. Convergence Theorem for Banach Space Valued Integrahle Muhifunetions [J]. Internat J Math Sci, 1987, 10(3): 433-442. 被引量:1
  • 10Okochi H. On the Existence of Anti-periodic Solutions to a Nonlinear Evolution Equation Associated with Odd Subdifferential Operators [J]. J Funct Anal, 1990, 91(2) : 246-258. 被引量:1

共引文献1

同被引文献19

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部