期刊文献+

Banach空间中发展包含的反周期问题 被引量:2

Anti-periodic Problems for Evolution Inclusions in Banach Space
下载PDF
导出
摘要 考虑一类发展包含在Banach空间中的反周期问题,集值函数G(t,x)取有界紧凸值的,关于变量t是可测的,关于变量x是闭图像,运用Kakutani-Fan不动点定理,对方程做了先验估计,给出了解存在的充分条件,并证明了解集是弱紧的. The authors discussed the anti-periodic problems for a class of evolution inclusions in Banach space.When the mutilfuction G(t,x) takes a bounded,weakly compact,convex value,and is measurable about variable t,is a closed graph about variable x,using techniques from the Kakutani-Fan fixed point theory,we have got a priori estimate to this equation and a sufficient condition of the existence of solutions,and proved the solution set is weakly compact.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2013年第4期626-628,共3页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11171350)
关键词 发展包含 反周期 不动点 evolution inclusion anti-periodic fixed point
  • 相关文献

参考文献10

  • 1Okochi H. On the Existence of Anti-periodic Solutions to a Nonlinear Evolution Equation Associated with Odd SuhdifferentialOperators [J]. J Funct Anal, 1990, 91(2): 246- 258. 被引量:1
  • 2LIU Qing. Existence of Anti periodic Mild Solutions for Semilinear Evolution Equations [J]. J Math Anal Appl, 2011, 377(1): 110-120. 被引量:1
  • 3WANG Yan. Antiperiodic Solutions for Dissipative Evolution Equations [J]. Math Comput Modelling, 2010, 51(5/6): 715-721. 被引量:1
  • 4CHEN Yu qing, WANG Xiang-dong, XU Hai-xiang. Anti-periodic Solutions for Semilinear Evolution Equations [J]. J Math Anal Appl, 2002, 273(2): 627- 636. 被引量:1
  • 5CHEN Yu-qing, Juan J, O'Regan N D. Anti periodic Solutions for Evolution Equations Associated with Maximal Monotone Mappings [J]. Applied Mathematics Letters, 2011, 24(3) : 302 -307. 被引量:1
  • 6Zeidler E. Nonlinear Functional Analysis and Its Applications [M]. Berlin: Springer-Verlag, 1984. 被引量:1
  • 7Zeidler E. Nonlinear Functional Analysis and Its Applications II [M]. New York: Springer-Verlag, 1990. 被引量:1
  • 8张育梅,程毅,王靖华.Banach空间中发展方程的反周期边值问题[J].吉林大学学报(理学版),2012,50(4):715-716. 被引量:5
  • 9Aubinj P, Cellina A. Differential Inclusion [M]. Berlin:Springer-Verlag, 1984. 被引量:1
  • 10Papageorgiou N S. Convergence Theorem for Banach Space Valued Integrahle Muhifunetions [J]. Internat J Math Sci, 1987, 10(3): 433-442. 被引量:1

二级参考文献7

  • 1LIU Qing. Existence of Anti-periodic Mild Solutions for Semilinear Evolution Equations [ J]. J Math Anal Appl, 2011, 377(1) : 110-120. 被引量:1
  • 2LIU Zhen-hai. Anti-periodic Solutions to Nonlinear Evolution Equations [J]. J Funct Anal, 2010, 258(6) : 2026-2033. 被引量:1
  • 3WANG Yan. Antiperiodic Solutions for Dissipative Evolution Equations [ J ]. Math Comput Modelling, 2010, 51 (5/6) : 715-721. 被引量:1
  • 4WU Rui. The Existence of T-Anti-periodic Solutions [ J ]. Applied Mathematics Letters, 2010, 23 (9) : 984-987. 被引量:1
  • 5CHEN Yu-qing, WANG Xiang-dong, XU Hai-xiang. Anti-periodic Solutions for Semilinear Evolution Equations [ J 1. J Math Anal Appl, 2002, 273(2) : 627-636. 被引量:1
  • 6CHEN Yu-qing. Anti-periodic Solutions for Semilinear Evolution Equations [J]. J Math Anal Appl, 2006, 315( 1 ): 337-348. 被引量:1
  • 7Zeidler E. Nonlinear Functional Analysis and Its Applications [ M ]. Berlin: Springer-Verlag, 1984. 被引量:1

共引文献4

同被引文献11

  • 1Okochi H. On the Existence of Anti-periodic Solutions to a Nonlinear Evolution Equation Associated with Odd Subdifferential Operators [J]. J Funct Anal, 1990, 91(2) : 246-258. 被引量:1
  • 2LIU Qing. Existence of Anti-periodic Mild Solutions for Semilinear Evolution Equations [J]. J Math Anal Appl, 2011, 377(1): 110-120. 被引量:1
  • 3WANG Yan. Antiperiodic Solutions for Dissipative Evolution Equations [J]. Math Comput Modelling, 2010, 51: 715-721. 被引量:1
  • 4CHEN Yu-qing, WANG Xiang-dong, XU Hai-xiang. Anti-periodic Solutions for Semilinear Evolution Equations [J]. J Math AnalAppl, 2002, 273(2): 627-636. 被引量:1
  • 5CHEN Yu-qing, Nieto J J, O'Regan D. Anti-periodic Solutions for Evolution Equations Associated with Maximal Monotone Mappings [J]. Applied Mathematics Letters, 2011, 24(3): 302-307. 被引量:1
  • 6Zeidler E. Nonlinear Functional Analysis and Its Applications[M]. Berlin: Spring-Verlag, 1984. 被引量:1
  • 7Zeidler E. Nonlinear Functional Analysis and Its Applications. Part Ⅱ : Nonlinear Monotone Operators [M]. New York: Springer-Verlag, 1990. 被引量:1
  • 8Aubinj P, Cellina A. Differential Inclusion [M]. Berlin: Springer-Verlag, 1984. 被引量:1
  • 9Tolstonogov A A. Existence and Relaxation Theorems for Extreme Continuous Selectors of Multifunctions with Decomposable Values [J]. Topology Appl, 2008, 155(8): 898-905. 被引量:1
  • 10张育梅,程毅,王靖华.Banach空间中发展方程的反周期边值问题[J].吉林大学学报(理学版),2012,50(4):715-716. 被引量:5

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部