期刊文献+

Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa L.) growth by TiO2 nanoparticles 被引量:3

原文传递
导出
摘要 Titanium dioxide nanoparticle(nano-TiO2),as an excellent UV absorbent and photo-catalyst,has been widely applied in modem industry,thus inevitably discharged into environment.We proposed that nano-TiO2 in soil can promote crop yield through photosynthetic and metabolic disturbance,therefore,we investigated the effects of nano-TiO2 exposure on related physiologic-biochemical properties of rice(Oryza sativa L.).Results showed that rice biomass was increased>30%at every applied dosage(0.1-100 mg/L)of nano-TiO2.The actual photosynthetic rate(Y(II))significantly increased by 10.0%and 17.2%in the treatments of 10 and 100 mg/L respectively,indicating an increased energy production from photosynthesis.Besides,non-photochemical quenching(Y(NPQ))significantly decreased by 19.8%-26.0%of the control in all treatments respectively,representing a decline in heat dissipation.Detailed metabolism fingerprinting further revealed that a fortified transformation of monosaccharides(D-fructose,D-galactose,and D-talose)to disaccharides(D-cellobiose,and Dlactose)was accompanied with a weakened citric acid cycle,confirming the decrease of energy consumption in metabolism.All these results elucidated that nano-TiO2 promoted rice growth through the upregulation of energy storage in photosynthesis and the downregulation of energy consumption in metabolism.This study provides a mechanistic understanding of the stress-response hormesis of rice after exposure to nano-TiO2,and provides worthy information on the potential application and risk of nanomaterials in agricultural production.
出处 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2020年第6期135-146,共12页 环境科学与工程前沿(英文)
基金 This work was supported by the National Natural Science Foundation of China(Nos.21836003 and 21520102009).
  • 相关文献

参考文献2

二级参考文献58

  • 1Seibert M. , Picorel R. , Rubin A. B. , et al. , Plant Physiol. , 1988, 87, 303. 被引量:1
  • 2Andreasson L. E. , Vanngard T. , Ann. Rev. Plant Physiol.Plant Mol. Biol. , 1988, 39, 379. 被引量:1
  • 3Nabedryk E. , Biaudet P. , Darr S. , Biochim. Biophs. Acta,1984, 767, 640. 被引量:1
  • 4Hinz V. G. , Carlsberg Res. Commun. , 1985, 50, 28. 被引量:1
  • 5Zheng L. , Hong F. S. , Lü S. P. , et al. , Biological Trace Element Research, 2004, 104, 9. 被引量:1
  • 6Crabtree R. H. , Science, 1998, 282, 2000. 被引量:1
  • 7Tang X. S., Satoh K., FEBS Lett., 1985, 179, 60. 被引量:1
  • 8Nanba O. , Satoh K. , Proc. Natl. Sci. USA, 1987, 84, 109. 被引量:1
  • 9Yamaguchi N. , Takahashi N. Y. , Satoh K. , Plant CellPhysiol. , 1988, 29, 123. 被引量:1
  • 10Schiller H. , Dittmer J. , Luzzolino L. , et al. , Biochemistry,1998, 37, 7340. 被引量:1

共引文献9

同被引文献17

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部