期刊文献+

高级氧化技术去除水环境中多环芳烃的研究进展 被引量:2

Review on Removal of Polycyclic Aromatic Hydrocarbons inAquatic Environment by Advanced Oxidation Technology
下载PDF
导出
摘要 多环芳烃(Polycyclic aromatic hydrocarbons,PAHs)由具有亲脂性质及较高解吸活化能的两个或多个苯环组成。它们主要有两种组合方式:一种是非稠环型,即苯环与苯环之间各由一个碳原子相连,如联苯、联三苯等;另一种是稠环型,即两个碳原子为两个苯环所共有,如萘、蒽等。由于其稳定的化学结构和较低的生物利用度,它们是环境中的持久性化合物。PAHs可由自然活动(例如陆地植被合成、微生物合成和火山活动)释放到环境中,但是,与自然火灾和人为来源产生的PAHs相比,这些自然活动释放的PAHs极少。其中人为活动(例如军事行动,车辆排放,农业生产,住宅废物燃烧,化石燃料的燃烧,石油行业的泄漏,炭黑、煤焦油沥青和沥青的制造,供热和发电以及发动机内燃物的排放)向环境中释放了更大量的PAHs。由于PAHs的毒性、致突变性和致癌性,科学家致力于通过研究修复机制来开发适当的工艺,以减轻PAHs对环境和人类健康的可能风险。物理、化学、热、生物和植物修复过程(包括焚化、热解吸、射频加热、氧化、离子交换、光解、吸附、电解、化学沉淀、自然衰减、生物刺激、生物强化、根际过滤、植物萃取、植物固定化和植物降解技术)是多环芳烃污染土壤、沉积物和水的主要处理方法,概括来说即为物理法、生物法和化学法。综合大量参考文献可知,实际操作中的PAHs去除工艺多以生物法或物理法为主。然而,这些方法均有一定程度的缺点,例如高投资和维护成本、复杂的操作程序。另外,有些处理方法在实施过程中会释放次级副产物,其中一些甚至是致癌和致突变的化合物,这将会进一步对公共卫生产生不利影响。化学法现在虽然多停留在实验室研究阶段,但与其它工艺相比有独特的优势,比如可应用范围广、对污染物无选择性、污染物可完全矿化等,是一种高效处理PAHs� Polycyclic aromatic hydrocarbons(PAHs)are composed of two or more benzene rings with lipophilic properties and high desorption activation energy.They mainly have two combinations.One is non-fused ring type,that is,benzene ring and the benzene rings are connected by a carbon atom,such as biphenyl,terphenyl,etc.;the other is a fused ring type,that is,two carbon atoms are shared by two benzene rings,such as naphthalene,anthracene,etc.They are persistent compounds in the environment due to their chemically stable structure and low bioavailable fraction.PAHs are released into the environment because of natural activities such as terrestrial vegetation synthesis,microbial synthesis,and volcanic activity.However,PAHs released by these processes are minimal in comparison with those produced from forest fires,grass land fires and anthropogenic sources.Anthropogenic activities(such as military operations,vehicular emissions,agricultural production,residential waste burning,combustion of fossil fuels,leakage from the petroleum industry,manufacturing of carbon black,coal tar pitch and asphalt,heating and power generation,and emissions from internal combustion engines)release a significant amount of PAHs into the environment.Due to the toxic,mutagenic,and carcinogenic natures of PAHs,developing appropriate removal process through understanding remediation mechanisms have been researched to mitigate the possible risk of PAHs on the environment and human health.Physical,chemical,thermal,biological and phytoremediation processes(which comprise incineration,thermal desorption,radio frequency heating,oxidation,ion exchange,photolysis,adsorption,electrolysis,chemical precipitation,natural attenuation,biostimulation,bioaugmentation,rhizofiltration,phytoextraction,plant immobilization and phytodegradation techniques)are the major treatment methods of PAHs contaminated soil,sediment and waters.In general,it is the physical,biological,and chemical processes.It can be known that the PAHs removal process in practice is mostly biological
作者 王德军 李慧 姜锡仁 赵朝成 赵玉慧 邓春梅 王鑫平 WANG Dejun;LI Hui;JIANG Xiren;ZHAO Chaocheng;ZHAO Yuhui;DENG Chunmei;WANG Xinping(North China Sea Environmental Monitoring Center,State Oceanic Administration,Qingdao 266033,China;Shandong Provincial Key Laboratory of Marine Ecology and Environment&Disaster Prevention and Mitigation,Qingdao 266033,China;College of Chemical Engineering,China University of Petroleum,Qingdao 266580,China;Qingdao Technical College,Qingdao 266555,China)
出处 《材料导报》 EI CAS CSCD 北大核心 2020年第S02期507-512,共6页 Materials Reports
基金 青岛市博士后应用研究项目。
关键词 高级氧化技术 多环芳烃(PAHs) 水处理 降解 反应机理 advanced oxidation technology polycyclic aromatic hydrocarbons(PAHs) water treatment degradation reaction mechanism
  • 相关文献

参考文献4

二级参考文献71

  • 1陈佩仪,李彦旭,孙楹煌,李丽娟.光电催化水处理技术研究进展[J].工业水处理,2005,25(12):13-17. 被引量:14
  • 2李淑彬,陈振军.微生物降解酚类化合物的研究进展[J].华南师范大学学报(自然科学版),2005,37(4):136-142. 被引量:23
  • 3李桂英,安太成,陈嘉鑫,陈繁忠,傅家谟,盛国英,叶恒鹏.光电催化氧化处理高含氯采油废水的研究[J].环境科学研究,2006,19(1):30-34. 被引量:42
  • 4李松田,霍鹏伟,闫永胜,吴春笃,王玲玲,邓月华.酞菁衍生物的组装改性技术及应用研究进展[J].化学试剂,2007,29(10):594-598. 被引量:3
  • 5Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972,238(53-58): 37. 被引量:1
  • 6Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCBrs in the presence of titanium dioxide in aqueous sus- pensions[J]. Bull Env Contamin Toxicol, 1976,16(6) : 697. 被引量:1
  • 7Gopal K Mor, Oomman K Varghese, Rudeger H T Wilke, et al. P-type Cu-Ti-O nanotube arrays and their use in self- biased heterojunction photoeleetrochemical diodes for hydro- gen generation[J]. Nano Lett,2008,8(7) :1906. 被引量:1
  • 8Karunakaran C, et al. Electrical, optical and visible light- photoeatalytie properties of monoclinie BiVO4 nanoparticles synthesized hydrothermally at different pH[J]. Mater Sci Semiconductor Process, 2014,21 : 122. 被引量:1
  • 9Wang Xuefei, Zhan Sha, Wang Yan, et al. Facile synthesis and enhanced visible-light photocatalytic activity of Ag2S nanocrystal-sensitized Ag8W4 O16 nanorods[J]. J Colloid In- terf Sci, 2014,422 : 30. 被引量:1
  • 10Lars Baetz Reutergardh, Mallika Langhasuk. Photocatalytic decolouration of reactive azodye: Acomparison between TiO2 and CdS photocatalysis [J]. Chemosphere, 1997, 35 (3):585. 被引量:1

共引文献12

同被引文献34

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部