摘要
液化石油气在全球清洁能源消耗市场中扮演着极为重要的角色,其通过船舶在不同港口之间进行运输,而港口之间通过局部密集的运输关系,形成了联系极为紧密的贸易社区。采用复杂网络社区探测方法,基于2013-2017年全球液化石油气船舶轨迹大数据构建运输网络,并对其贸易社区特征及其演化趋势开展分析。结果表明:(1)液化石油气(Liquefied Petroleum Gas,LPG)贸易社区内的港口之间的联系更加紧密,不同社区内的枢纽港口联系也日益紧密;(2)各个贸易社区的规模呈现出增长趋势,且同一社区内的港口在地理空间上变得更为集聚;(3)亚太地区、中东、西北欧和地中海地区形成的社区在全球LPG贸易中一直保持着重要地位,而随着时间推移,美洲社区已逐渐从一个相对孤立的社区发展成为与其他社区存在紧密联系的社区。
Liquefied petroleum gas(LPG) plays a very important role in the global clean energy consumption market. It is transported by vessel between ports, and the ports have formed a series of extremely close-knit trading communities through local dense trade relations. In this study, we build transportation networks based on the global LPG vessel trajectories data from2013 to 2017, and adopt a community detection method to analyze the characteristics of this type of trading community and evolution trend. The results show that:(1) The ports in the LPG trading community are more closely connected, and the hub ports in different communities are becoming closer over time.(2) The number of ports in each trading community shows an increasing trend, and the ports in the same community are becoming more geographically agglomerated.(3) Communities formed in the Asia-Pacific region, the Middle East, North and West Europe and the Mediterranean region have maintained an important position in the global LPG trade, while those in the Americas have gradually evolved from a relatively isolated community to one that has close ties with other communities over time.
作者
彭澎
程诗奋
陈闪闪
陆锋
PENG Peng;CHENG Shi-fen;CHEN Shan-shan;LU Feng(State Key Laboratory of Resources and Environmental Information System,Institute of Geographic Sciences and Natural Resources Research,CAS,Beijing 100101,China;University of Chinese Academy of Sciences Beijing 100049,China;The Academy of Digital China,Fuzhou University,Fuzhou 350002,China)
出处
《自然资源学报》
CSSCI
CSCD
北大核心
2020年第11期2687-2695,共9页
Journal of Natural Resources
基金
国家自然科学基金项目(42001391)
中国博士后科学基金资助项目(2020T130644,2019M660774)。
关键词
液化石油气
船舶轨迹数据
社区探测
贸易特征
liquefied petroleum gas
vessel trajectory data
community detection
trade characteristics