期刊文献+

基于时空相似系数的环形交叉口车辆轨迹聚类 被引量:1

Vehicle Trajectory Clustering at Roundabout Based on Space-Time Similarity Coefficient
下载PDF
导出
摘要 为了分析交叉口车辆运行轨迹的规律性,提高环形交叉口交织段的通行能力,提出基于时空相似系数的环形交叉口车辆轨迹聚类方法。针对规定区域车辆轨迹,分析车辆轨迹时空信息并计算得到时空相似系数,同时采用谱聚类进行聚类,将交叉口区域内一段时间内的轨迹聚类情况进行可视化展示。经过实例验证,所提出的方法能够有效地约简数据,并可提取出轨迹信息中的潜在规律,为进一步的决策工作提供一定的参考价值。 In order to analyze the rules of vehicle trajectory and so as to improve the capacity of the weaving area of roundabout,the method of vehicle trajectory clustering at roundabout is studied based on space-time similarity coefficient. The space-time information of vehicle trajectory is analyzed for the specified vehicle trajectory,and the space-time similarity coefficient is calculated and clustered by spectral clustering. The trajectory clustering in a period of time in the intersection area is visualized. It is proved that the method can effectively reduce the data and dig out the hidden rules of the trajectory information,which provides a valuable reference for further decision-making work.
作者 任柏寒 丁雪梅 孙士龙 REN Baihan;DING Xuemei;SUN Shilong(Traffic Engineering Institute,Jilin University of Architecture and Technology,Changchun 130114,China;Public Opinion Section,Baishan Internet Information Center,Baishan 134300,China)
出处 《吉林大学学报(信息科学版)》 CAS 2020年第6期640-646,共7页 Journal of Jilin University(Information Science Edition)
基金 国家自然科学基金资助项目(51308249)。
关键词 时空相似系数 谱聚类 车辆轨迹聚类 交通工程 space-time similarity coefficient spectral clustering vehicle trajectory clustering traffic engineering
  • 相关文献

参考文献9

二级参考文献142

  • 1何彬彬,方涛,郭达志.基于不确定性的空间聚类[J].计算机科学,2004,31(11):196-198. 被引量:8
  • 2石陆魁,何丕廉.一种基于密度的高效聚类算法[J].计算机应用,2005,25(8):1824-1826. 被引量:21
  • 3贺玲,吴玲达,蔡益朝.数据挖掘中的聚类算法综述[J].计算机应用研究,2007,24(1):10-13. 被引量:225
  • 4陈继东,孟小峰,赖彩凤.基于道路网络的对象聚类[J].软件学报,2007,18(2):332-344. 被引量:29
  • 5朱丽莉,王金华.手机定位服务系统的研究[J].华东理工大学学报(自然科学版),2007,33(B06):21-23. 被引量:5
  • 6LEE J G, HAN J W, WHANG K Y. Trajectory clustering: a partition-and-group framework[A]. Proceedings of the 2007 ACM SIG-MOD International Conference on Management of Data[C]. Beijing, China, 2007. 593-604. 被引量:1
  • 7CHANG C, ZHOU B Y. MuM-granularity visualization of trajectory clusters using sub-trajectory clustering[A]. Proceedings of the 7th IEEE International Conference on Data Mining Workshops[C]. Miami, Florida, USA, 2009. 577-582. 被引量:1
  • 8KREVELD M V, LUO J. The definition and computation of trajectory and sub-trajectory similarity[A]. Proceedings of the 15th Annual ACM International Symposium on Advances in Geographic Information Systems[C]. Seattle, Washington, USA. 2007. 324-327. 被引量:1
  • 9PELEKIS N, KOPANAKIS I, MARKETOS G, et al. Similarity search in trajectory databases[A]. Proceedings of the 14th International Symposium on Temporal Representation and Reasoning[C]. Washington, DC, USA, 2007. 129-140. 被引量:1
  • 10MICHAIL V, MARIOS H, DIMITRIOS G Indexing multidimensional time-series[J]. The International Journal on Very Large Data Bases, 2006, 15(1): 1-20. 被引量:1

共引文献486

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部