期刊文献+

基于Contourlet域自适应Wiener阈值的同时震源波场分离 被引量:2

Simultaneous-source wavefield separation based on adaptive Wiener threshold in Contourlet domain
下载PDF
导出
摘要 同时震源数据包含了多炮之间的串扰噪声,不能直接用于常规数据处理流程.因此,需要对混叠的波场进行分离得到常规采集的单炮记录.本文基于稀疏迭代反演分离,提出了一种具有尺度与空间自适应的Wiener阈值选取方法.该阈值选取方法能够根据不同迭代环境计算不同尺度下串扰噪声的方差和不同空间位置有效信号的方差,从而自适应调整阈值大小,最终通过对变换域系数进行收缩来达到去除串扰噪声的目的.理论模型数据和实际数据测试结果表明,本文方法能够快速有效地压制串扰噪声和保护弱有效信号,取得了比Contourlet域子带一致Wiener阈值方法和Curvelet域指数衰减阈值方法更好的分离效果. The simultaneous-source data cannot be directly used for seismic data processing workflow due to crosstalk noise of the interference guns.Therefore,the blended wavefield needs to be separated to obtain the conventional single shot record.Based on the threshold iterative inversion separation in sparse domain,a scale and spatially adaptive Wiener threshold method is proposed.With the method,the threshold values are adaptively calculated by using the variance of crosstalk noise at different scales and the variance of effective signals at different spatial positions at each iteration,and are used to attenuate the crosstalk noise by shrinking the coefficients in transform domain.The results tested by synthetic and field data show that the proposed method can more quickly and effectively suppress crosstalk noises and keep valuable weak signals than the traditional Wiener threshold method with subband consistent in Contourlet domain and the exponential attenuation threshold method in Curvelet domain.
作者 王坤喜 毛伟建 WANG KunXi;MAO WeiJian(Center for Computational and Exploration Geophysics,Innovation Academy for Precision Measurement Science and Technology,Chinese Academy of Sciences/and State Key Laboratory of Geodesy and Earth's Dynamics,Wuhan 430077,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2021年第1期263-278,共16页 Chinese Journal of Geophysics
基金 国家重点研发计划(2018YFC0310104) 国家自然科学基金(U1562216,41974163) 国家科技重大专项项目“新一代地球物理油气勘探软件系统”(2017ZX05018-001)联合资助.
关键词 同时震源 稀疏反演 CONTOURLET变换 自适应阈值 WIENER滤波 Simultaneous-source Sparse inversion Contourlet transform Adaptive threshold Wiener filtering
  • 相关文献

参考文献8

二级参考文献89

共引文献97

同被引文献13

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部