期刊文献+

更新信号的阶段性融资效应:基于众筹市场的跨类别实证研究 被引量:12

The Periodic Impact of Linguistic Cues to Update Signalson Successful Crowdfunding Campaigns Among Categories
原文传递
导出
摘要 在众筹项目融资过程中,融资人面对两难选择:一是尽可能详细宣传项目以吸引投资者,同时又担心创意泄露,不会一次性把所有的信息公之于众。通常,融资人会选择合适的时间通过众筹平台将项目创意和进展分阶段地发布给投资者。为此,本文研究了众筹项目的阶段性文本更新对融资成功率的影响,采用来自Kickstarter上的243,730条更新文本作为研究数据。首先,对更新信息进行预处理,采用文本层次聚类对更新文本进行主题识别,得到6类信号更新主题:进度汇报、内容更新、回报有关、时间提醒、表示感谢、社会化推广。随后,针对三个不同的融资阶段(前期、中期和后期),探究不同的信息更新主题在不同阶段对成功融资的影响。对于不同的项目类别,投资者关注的重点存在差异,为此研究了不同项目类别中的各个融资阶段应该突出的信号主题,同时还检验了内部信号主题与外部信号主题对融资影响的差异。总体而言,频繁的信号更新有助于项目融资成功,而且在中后期的更新可以更加有效的提高融资绩效。对于信号更新主题,表示感谢、进度汇报和时间提醒等外部信号更新的效果比另外三类效果好得多,不同项目类别之间的信号更新策略存在显著差异,生活类项目与体验类项目的信号更新策略基本一致,而艺术类项目则显著不同于其他类别的项目。本文丰富了我们对更新信号的阶段性融资效应的理解,为互联网金融研究以及用户行为模式研究提供新视角。 During the process of crowd funding,the initiators commonly face a dilemma to choose between integrity and confidentiality of project’s idea disclosure.They need to promote the project as specific as possible for one side and leave some in reserve to avoid ideas giving away for the public.Generally,the initiators release the project progress to the investors at the right time by phases through the text updates on the platform.Therefore,the impacts of periodic text updates are investigated on the successful rate of crowd funding campaigns.Text hierarchical clustering is used to classify the updated text of the crowdfunding project.Euclidean distance function d(x,y)=√n∑i=1(xi-yi)^2 is employed to calculate the distance between words that extracted from the update content.Then according to the distance dmax(Ci,Cj)=maxxi∈Ci,xj∈Cj distance(xi,xj)to maximize the distance between clusters.The aim is to minimize the distance in the cluster and maximize the distance between clusters.Firstly,the update text and extract keywords are pre-processed for topic analyzing.Six categories of topics are obtained through clustering topics of the updated text using hierarchical clustering method,that are(1)progress reports,(2)content updates,(3)reward related content,(4)time reminders,(5)thanks-related content and(6)social promotion respectively.An econometric model Successi=α+U′i.β+Z′i.γ+εi is built to estimate the periodic impact of linguistic cues to updates on successful crowdfunding campaigns.Using 126593 crowdfunding projects from Kickstarter as research data,with the total number of 407,582 updates,of which 243,730 published during the financing period,accounting for about 60%,while 163,852 updates are generated after fund raising duration.Then,for the three different phases(the early phase,the middle phase and the late phase),the effect of each update topic on the funding results is explored.Since there are some differences between investors’concern between projects,it is examined which update topic should
作者 王伟 何翎 Kevin Zhu 孙锐 王洪伟 WANG Wei;HE Ling;KEVIN Zhu;SUN Rui;WANG Hong-wei(College of Business Administration,Huaqiao University,Quanzhou 362021,China;Rady School of Management,University of California San Diego,USA;School of Economics and Management,Tongji University,Shanghai 200092,China)
出处 《中国管理科学》 CSSCI CSCD 北大核心 2020年第11期155-166,共12页 Chinese Journal of Management Science
基金 国家自然科学基金资助项目(72072062,71601082,71771177) 福建省自然科学基金资助项目(2020J01782) 中国标准化协会服务贸易标准化科研课题(FMBZH-1947)。
关键词 众筹 信息更新 融资效应 文本挖掘 主题分类 投资意向 crowd funding information updates financing effect text mining topic classification investment intention
  • 相关文献

参考文献9

二级参考文献220

  • 1吴孝灵,周晶,彭以忱,段庆康.基于公私博弈的PPP项目政府补偿机制研究[J].中国管理科学,2013,21(S1):198-204. 被引量:101
  • 2申悦,于瑞峰,吴甦,刘丽文.零售商B ertrand竞争下的供应链成本信息共享价值[J].清华大学学报(自然科学版),2005,45(11):1581-1584. 被引量:47
  • 3徐淑英,欧怡.组织与管理研究的实证方法[M].北京大学出版社,2008. 被引量:2
  • 4Bickart B, Schindler R M. Internet forums as influential sources of consumer information[J]. Journal of Interactive Marketing, 2001, 15(3): 31-40. 被引量:1
  • 5Kozinets R V, de Valck K, Wojnicki A C, et al. Networked narratives: Understanding word-of-mouth marketing in online communities[J]. Journal of Marketing, 2010, 74(2): 71-89. 被引量:1
  • 6Duan W, Gu B, Whinston A B. Do online reviews matter? -- An empirical investigation of panel data[J]. Decision Support Systems, 2008, 45(4): 1007-1016. 被引量:1
  • 7Archak N, Ghose A, Ipeirotis P G. Deriving the pricing power of product features by mining consumer reviews[J]. Management Science, 2011, 57(8): 1485-1509. 被引量:1
  • 8Ghose A, Ipeirotis P G. Estimating the helpfulness and economic impact of product reviews: Mining text and reviewer characteristics[J]. IEEE Transactions on Knowledge and Data Engineering, 2011, 23(10): 1498-1512. 被引量:1
  • 9Darby M R, Karni E. Free competition and the optimal amount of fraud[J]. Journal of Law and Economics, 1973, 16(1): 67 88. 被引量:1
  • 10Liu J, Cao Y, LinC Y, et al. Low-quality product review detection in opinion summarization[C]// Conference on Empirical Methods on Natural Language Processing and Computational Natural Language Learning, 2007: 334-342. 被引量:1

共引文献248

同被引文献121

引证文献12

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部