期刊文献+

模糊情形下的疫情决策与风险管理

Epidemic Decision-Making and Risk Management in Ambiguous Situations
下载PDF
导出
摘要 防范化解重大风险是三大攻坚战的内容之一,也是杜绝新冠肺炎等事件再次出现的重要保证,这凸显出了对科学决策方法的需求,特别是在模糊情形下评估收益、衡量风险的一般方法。非精确概率归纳逻辑可以提供帮助,它首先用非精确预期表达出基于模糊情形的判断;然后用避免确定损失挑选出无害的初始行动方案,最后用自然扩张挑选出最优的措施,此外由于风险被解释为非精确预期,这一方法还可以用于评估措施的风险。相比传统的决策方法,这一方法最大的优点是能够处理模糊性,提高了应对黑天鹅事件的决策能力。 Defending and removing major risks is one of the Three Critical Battles,crucial to prevent the recurrence of crisis like Covid-19,which demands scientific decision-making methods,especially the general methods of assessing benefits and measuring risk in vague situations.Fortunately,the imprecise probability induction logic can help,which could express a judgment based on vague situation with an imprecise prevision at first,then select harmless initial action plans by avoiding definite loss,and finally select the optimal measure by natural extension.Because risk is interpreted as an imprecise prevision,this approach can also be used to assess the risk of measures.Compared with the traditional decision-making method,the greatest advantage of this approach lies in its ability to deal with ambiguity and improve the decision-making ability to deal with Black Swan events.
作者 潘文全 PAN Wen-quan(School of Marxism,Lingnan Normal University,Zhanjiang,524048,China)
出处 《太原学院学报(社会科学版)》 2020年第5期1-8,16,共9页 Journal of Taiyuan University(Social Science Edition)
基金 现代归纳逻辑的“新发展、理论前沿与应用研究”(15ZDB018) 广东省哲学社会科学青年项目“非精确概率归纳逻辑研究”(GD19YZX02) 广东省教育厅科研项目“非精确概率逻辑理论及其应用研究”(2019WQNCX072) 岭南师范学院校级项目“非精确概率逻辑研究”(ZW1909)。
关键词 非精确概率 决策 风险 自然扩张 imprecise probability decision-making risk natural extension
  • 相关文献

参考文献2

二级参考文献8

  • 1熊卫,鞠实儿,罗旭东.论Dempster-Shafer理论的一个悖论[J].计算机科学,2005,32(8):145-146. 被引量:2
  • 2R. JEFFREY. The Logic of Decision [M]. New York:McGraw-Hill, 1983. 被引量:1
  • 3I. HACKING. An introduction to Probability and Inductive Logic [M]. Cambridge University Press, 2001. 被引量:1
  • 4A. SHIMONY. Coherence and Axioms of Probability [J]. Journal of Symbolic Logic, 1955. 被引量:1
  • 5T. SEIDENFELD, J. KADANE, M. SCHERVISH. On the Shared Preferences of Two Bayesian Decision Makers [J].The Journal of Philosophy, 1989,(5). 被引量:1
  • 6P. C. FISHBURN. Nontransitive Measurable Utility [J]. Journal of Mathematical Psychology, 1983. 被引量:1
  • 7T, SEIDENFELD, M. SCHERVISH, J, KADANE, Decisions Without Ordering[A]. Rethinking the Foundations of Statistics[M]. Cambridge University Press, 1999. 被引量:1
  • 8W. XIONG, S. JU, X. LUO. A Clash in Dempster-Shafer Theory [Z]. The 10th IEEE International Conference on Fuzzy Systems, 2001. 被引量:1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部