期刊文献+

燃气蒸汽联合循环发电机组健康管理大数据系统

Big data system of health management for gas-steam combined cycle generator unit
下载PDF
导出
摘要 大数据系统是发电机组状态监测与健康管理系统迈向智能化和工程应用的关键。本文以燃气蒸汽联合循环发电机组为应用场景,对其健康管理大数据系统进行分析研究。提出联合循环机组智能状态监测与健康管理系统的整体设计框架,分析大数据系统的特点及关键技术。指出大数据系统是以知识为核心的专用数据管理系统,知识获取和结构化表达是大数据系统构建的关键技术。最后通过燃气蒸汽联合循环机组设备分析、领域知识获取和知识结构化表达验证了大数据系统构建方法在工程实践中的应用效果。 The big data system is the key to intelligent and engineering implementation of condition monitoring and health management system of generator units.In this article,the gas-steam combined cycle generator unit is selected as the application scenario to carry out research on its health management big data system.The overall framework of the intelligent condition monitoring and health management system of the combined cycle unit is proposed.The characteristics and key technologies of the big data system are analyzed,and it is pointed out that the big data system is a specific data management system with knowledge as the core,knowledge acquisition and structured expression the key technologies of big data system construction.Finally,through equipment analysis,domain knowledge acquisition and knowledge structured expression of the combined cycle unit,the engineering application effect of the big data construction method is verified.
作者 黄元平 王仲 韩旭东 顾煜炯 HUANG Yuanping;WANG Zhong;HAN Xudong;GU Yujiong(Guangdong Yuedian Zhongshan Thermal Power Plant Limited Company,Zhongshan 528400,China;School of Energy Power and Mechanical Engineering,North China Electric Power University,Beijing 102206,China)
出处 《热力发电》 CAS 北大核心 2020年第12期59-64,共6页 Thermal Power Generation
基金 国家重点研发计划项目(2017YFB0603904-4) 中央高校基本科研业务费专项资金资助(2017XS055)。
关键词 大数据系统 燃气蒸汽联合循环机组 状态监测 健康管理 知识获取 结构化表达 big data system gas-steam combined cycle unit condition monitoring health management knowledge acquisition knowledge structured expression
  • 相关文献

参考文献8

二级参考文献120

  • 1张彦涛,苏峰,汪洋,徐帆,丁恰,涂孟夫.联合循环机组维护成本建模及求解[J].电网与清洁能源,2015,31(6):6-11. 被引量:9
  • 2尚金成,张立庆.电力节能减排与资源优化配置技术的研究与应用[J].电网技术,2007,31(22):58-63. 被引量:104
  • 3Boyce M P. Gas turbine engineering handbook[ M]. Elsevier,2012. 被引量:1
  • 4Goneharov V V. The forecast of the development of the market for gas turbine equipment in the years 2013 -2021 (review) [ J]. Thermal Engineering 609:676 - 678. 被引量:1
  • 5http ://www. power-eng, com/articles/2OlO/O2/industrial-gas-tur- bine. html. 被引量:1
  • 6Diallo O, Mavris D. A Data Analytics Approach to Failure Precur- sor Detection of Gas Turbine[ C ]. ASME Turbo Expo, Vancouver, Canada,2011, GT2011 - 46019. 被引量:1
  • 7Stoll H G. Creating owner' s competitive advantage through con- tractual services[ C ]. GE Power Systems ,2001. 被引量:1
  • 8Balevic D, Burger R, Forry D. Heavy-Duty Gas Turbine Operating and Maintenance Considerations[ C ] ,2004. 被引量:1
  • 9Balevic D, Hartman S, Youmans R. Heavy-Duty Gas Turbine Oper- ating and Maintenance Considerations[ CJ GER-3620L. 1. 被引量:1
  • 10Volponi A J. Gas Turbine Engine Health Management:Past, Pres- ent, and Future Trends [ J ]. Journal of Engineering for Gas Tur- bines and Power 1365) :051201. 被引量:1

共引文献285

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部