期刊文献+

一种星载GNSS-R海面风向反演方法 被引量:2

A Method of Spaceborne GNSS-R Sea Surface Wind Direction Inversion
下载PDF
导出
摘要 针对目前海面风场反演中风向反演困难,准确性低的问题,提出一种利用深度网络反演海面风向的新方法,该方法采用星载GNSS-R信号作为遥感源,根据海面反射信号特性与风向相关关系选择反演观测量,建立海面风向反演的深度网络模型。引入ReLU函数作为网络激活函数,并基于遗传算法(GA)优化了网络模型,对输入数据进行时空匹配与归一化处理,通过机器学习建立风向与输入变量的对应关系,利用深度网络模型反演得到海面风向,该方法反演结果的均方根误差εRMSE=18.14°,满足海面风向测量精度均方误差小于20°的一般测量要求,并通过两组对比试验验证了该方法的有效性和鲁棒性。 Aimed at the difficult wind direction inversion with a low accuracy in current sea surface wind field retrieval,a new method using deep network for sea surface wind direction inversion is proposed.The method adopts the spaceborne GNSS-R signal as the source of remote sensing,and selects the inversion observations according to the correlation between the surface reflected signal characteristics and the wind direction,so as to establish the deep network model for sea surface wind direction inversion.The ReLU function is introduced as the network activation function,the network model is optimized based on the genetic algorithm(GA),the temporal-spatial matching and the normalized processing are conducted for the input data,the corresponding relation between the wind direction and the input variables is established through machine learning,and thus the sea surface wind direction is obtained by using the deep network model inversion.The root mean square error of the inversion results of this method is 18.14°,meeting the general requirement of sea surface wind measurement accuracy with a mean square error less than 20°.The effectiveness and robustness of this method are verified by two groups of contrast tests.
作者 高涵 白照广 范东栋 GAO Han;BAI Zhao-guang;FAN Dong-dong(DFH Satellite Co.,Ltd.,Beijing 100094,China)
出处 《宇航学报》 EI CAS CSCD 北大核心 2020年第11期1473-1480,共8页 Journal of Astronautics
关键词 海面风向 深度网络 GA优化算法 GNSS-R 反演模型 Sea wind direction Deep network GA optimization algorithm GNSS-R Inversion model
  • 相关文献

参考文献12

二级参考文献127

共引文献303

同被引文献20

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部