期刊文献+

基于BP神经网络反演云顶高度 被引量:1

Inversion of Cloud Top Height Based on BP Neural Network
下载PDF
导出
摘要 精确估计云顶高度可以在数值天气预报以及气候模型领域中起到举足轻重的作用。云顶高度首先影响着加受油机对接,影响着飞机通讯质量,其次降低对目标的识别,还会破坏电磁干扰与抗干扰。因此,获取更精确的云高信息,不仅节约了时间,还避免了错误估计而造成不必要的损失。本文以训练样本集中日本葵花8静止气象卫星光谱通道数据为输入,以美国CALIPSO卫星的结果为输出,通过构建神经网络模型方法,利用BP神经网络,针对葵花8静止气象卫星,建立葵花8卫星云顶高反演模型,使用检验样本集,对反演模型取得的云顶高反演结果进行检验与分析,研究模型的云顶高反演能力、特性和效果。 Accurate estimation of cloud top height can play a pivotal role in numerical weather prediction and climate modelling.The height of the cloud top first affects the docking of the oil receiving machine,affecting the communication quality of the aircraft,and secondly reducing the recognition of the target,and also destroying electromagnetic interference and anti-interference.Therefore,obtaining more accurate cloud high information not only saves time,but also avoids erroneous estimation and causes unnecessary loss.In this paper,the data of the spectral data of the Japanese sunflower 8 geostationary meteorological satellite in the training sample are taken as input,and the results of the US CALIPSO satellite are taken as the output.By constructing the neural network model method and using the BP neural network,the sunflower 8 satellite cloud top is established for the sunflower 8 geostationary meteorological satellite.The high inversion model uses the test sample set to test and analyze the Genting high inversion results obtained by the inversion model,and to study the model’s cloud top high inversion ability,characteristics and effects.
作者 刘申英紫 孟恒 Liu Shenyingzi;Meng Heng(School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China)
出处 《科技通报》 2020年第6期67-71,共5页 Bulletin of Science and Technology
关键词 云顶高度 日本葵花卫星 BP神经网络 反演模型 genting height Japanese sunflower satellite BP neural network inversion model
  • 相关文献

参考文献5

二级参考文献85

  • 1王伟民,周祖刚,李海民.大气对NOAA通道辐射透过率的影响研究[J].气象科学,2004,24(3):285-293. 被引量:5
  • 2徐萌,郁凡.去除EOS/MODIS 1B数据中“弯弓”效应的方法[J].气象科学,2005,25(3):257-264. 被引量:25
  • 3周明煜,李诗明,陈陟,张占海,Xubin Zeng.北极夏季冰面上近地层特征及热量收支问题[J].地球物理学报,2006,49(2):353-359. 被引量:4
  • 4闫妍,许伟,部慧,宋洋,张文,袁宏,汪寿阳.基于TEI@I方法论的房价预测方法[J].系统工程理论与实践,2007,27(7):1-9. 被引量:49
  • 5Solomon S, Qin D, Manning M, et al. Climate Change 2007: the Physical Science Basis [M]. Cambridge and New York Cambridge University Press, 2008. 被引量:1
  • 6Ohring G, Adler S. Some Experiments with a Zonally Averaged Climate Model[J]. Journal of the Atmospheric Sciences, 1978,35 : 186-205. 被引量:1
  • 7Stephens G L, Vane D G, Boain R J,et al. The Cloudsat Mission and the A-train A New Dimension of Space-based Observations of Clouds and Precipitation[J]. Bulletin of the American Meteorological Society,2002,83 :1771-1790. 被引量:1
  • 8Smith W L,Woolf H M,Jacob W J. A Regression Method for Obtaining Real time Temperature and Geopotential Height Profiles from Satellite Spectrometer Measurements and Its Application to NIMBUS3 " SIRS" SIRS Observations [J]. Monthly Weather Review, 1970,98 : 582- 603. 被引量:1
  • 9Deschamps P Y, Fouquart Y, Tanre D, et al. Study on the Effects of Scattering on the Monitoring of Atmospheric Constituents [ D ].Laboratoire D'Optique Atmospherique, Universite de Lille-1, France, 1994. 被引量:1
  • 10De Beek R,Vountas M,Rozanov V V,et al. The Ring Effect in the Cloudy Atmosphere[J]. Geophysical Research Letters, 2001,28:721- 724. 被引量:1

共引文献27

同被引文献13

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部